论文标题
Freerea:基于无培训的基于进化的建筑搜索
FreeREA: Training-Free Evolution-based Architecture Search
论文作者
论文摘要
在过去的十年中,机器学习中的大多数研究都有助于改善现有模型,目的是提高神经网络的性能,以解决各种不同的任务。但是,这些进步通常是以增加模型内存和计算要求的成本为代价。这代表了在现实环境中的研究产出的可部署性,成本,能耗和框架复杂性起着至关重要的作用的重要限制。为了解决此问题,设计师应搜索在限制其足迹的同时最大程度地提高性能的模型。实现此目标的典型方法依赖于手动过程,该过程无法保证最终设计的最佳性,或者是在非常高的计算时间的费用下自动化该过程的神经体系结构搜索算法。本文为快速识别神经网络提供了解决方案,该神经网络可以最大程度地提高模型的精度,同时保留了典型的微型设备的尺寸和计算约束。我们的方法名为Freerea,是一种基于自定义的基于单元格的NAS算法,该算法利用了无训练指标的优化组合来在搜索过程中对体系结构进行排名,因此无需模型培训。我们的实验是在常见的基准NAS-Bench-101和Nats Bench上进行的,这表明我是Freerea是一种快速,高效且有效的自动设计搜索方法; ii)在考虑的所有数据集和基准中,它都优于基于培训和无培训的技术的状态,iii)它可以轻松地将其推广到约束场景,这代表了在通用受约束应用程序中快速神经架构搜索的竞争解决方案。该代码可在\ url {https://github.com/niccolocavagnero/freerea}中获得。
In the last decade, most research in Machine Learning contributed to the improvement of existing models, with the aim of increasing the performance of neural networks for the solution of a variety of different tasks. However, such advancements often come at the cost of an increase of model memory and computational requirements. This represents a significant limitation for the deployability of research output in realistic settings, where the cost, the energy consumption, and the complexity of the framework play a crucial role. To solve this issue, the designer should search for models that maximise the performance while limiting its footprint. Typical approaches to reach this goal rely either on manual procedures, which cannot guarantee the optimality of the final design, or upon Neural Architecture Search algorithms to automatise the process, at the expenses of extremely high computational time. This paper provides a solution for the fast identification of a neural network that maximises the model accuracy while preserving size and computational constraints typical of tiny devices. Our approach, named FreeREA, is a custom cell-based evolution NAS algorithm that exploits an optimised combination of training-free metrics to rank architectures during the search, thus without need of model training. Our experiments, carried out on the common benchmarks NAS-Bench-101 and NATS-Bench, demonstrate that i) FreeREA is a fast, efficient, and effective search method for models automatic design; ii) it outperforms State of the Art training-based and training-free techniques in all the datasets and benchmarks considered, and iii) it can easily generalise to constrained scenarios, representing a competitive solution for fast Neural Architecture Search in generic constrained applications. The code is available at \url{https://github.com/NiccoloCavagnero/FreeREA}.