论文标题
违反设施位置的2 LMP近似障碍,并向K-Median申请
Breaching the 2 LMP Approximation Barrier for Facility Location with Applications to k-Median
论文作者
论文摘要
无容易受到的设施位置(UFL)问题是最基本的聚类问题之一:给定一组客户$ c $和一组设施$ f $在公制空间$(C \ C \ cup f,dist)$带有设施的费用$ open $ open:f \ f \ f \ to \ mathbb {r}^+$,可以找到一组设施$ $ s $ seme $ sep $ sep $ s $ s SEMEE $ s SEMEE s SEMEE seee。 $ open(s)$和连接成本$ d(s):= \ sum_ {p \ in C} \ min_ {c \ in s} dist(p,c)$。 UFL的算法称为Lagrangian乘数保存(LMP)$α$近似,如果它输出解决方案$ s \ subseteq f $满足$ open(s) + d(s) + d(s)\ leq open(s^**) + s^*)根据双拟合技术,JMS,Mahdian和Saberi的JMS算法最多是$ 2 $的最著名的LMP近似值。 我们为UFL提出了一种(稍微)改进的LMP近似算法。这是通过将双拟合技术与本地搜索(解决聚类问题的另一种流行技术)相结合来实现的。从概念的角度来看,我们的结果提供了一个理论上的证据,表明可以通过基于LP的技术选择初始可行解决方案来增强本地搜索,从而避免局部搜索。使用两重点解决方案的框架,我们的结果直接暗示了$ K $ -Median问题的(略有)改进的近似值从2.6742到2.67059。
The Uncapacitated Facility Location (UFL) problem is one of the most fundamental clustering problems: Given a set of clients $C$ and a set of facilities $F$ in a metric space $(C \cup F, dist)$ with facility costs $open : F \to \mathbb{R}^+$, the goal is to find a set of facilities $S \subseteq F$ to minimize the sum of the opening cost $open(S)$ and the connection cost $d(S) := \sum_{p \in C} \min_{c \in S} dist(p, c)$. An algorithm for UFL is called a Lagrangian Multiplier Preserving (LMP) $α$ approximation if it outputs a solution $S\subseteq F$ satisfying $open(S) + d(S) \leq open(S^*) + αd(S^*)$ for any $S^* \subseteq F$. The best-known LMP approximation ratio for UFL is at most $2$ by the JMS algorithm of Jain, Mahdian, and Saberi based on the Dual-Fitting technique. We present a (slightly) improved LMP approximation algorithm for UFL. This is achieved by combining the Dual-Fitting technique with Local Search, another popular technique to address clustering problems. From a conceptual viewpoint, our result gives a theoretical evidence that local search can be enhanced so as to avoid bad local optima by choosing the initial feasible solution with LP-based techniques. Using the framework of bipoint solutions, our result directly implies a (slightly) improved approximation for the $k$-Median problem from 2.6742 to 2.67059.