论文标题

在时间和原因的独立性上

On independence of time and cause

论文作者

Kella, Offer

论文摘要

对于两个独立的,几乎肯定有限的随机变量,其最小值(时间)的独立性以及其中一个是更大,相等或小于另一个(原因)的事件。结果表明,除了几乎可以肯定的是,一个随机变量大于或等于另一个情况外,当且仅当两个随机变量分布得像两个独立随机变量的严格增加函数时,这会发生这种情况,而两个独立随机变量的严格增加功能,而两个随机变量均为指数分布,或者两者都在几何分布中分布。然后很容易将其推广到多元案例。

For two independent, almost surely finite random variables, independence of their minimum (time) and the event that one of them is either greater, equal or less than the other (cause) is completely characterized. It is shown that, other than for trivial cases where, almost surely, one random variable is greater than or equal to the other, this happens if and only if both random variables are distributed like the same strictly increasing function of two independent random variables, where either both are exponentially distributed or both are geometrically distributed. This is then easily generalized to the multivariate case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源