论文标题
可伸缩波束形成优化的两分图神经网络方法
A Bipartite Graph Neural Network Approach for Scalable Beamforming Optimization
论文作者
论文摘要
深入学习(DL)技术已被深入研究,以优化多用户多输入单输出(MU-MISO)下行链接系统,这是由于处理非convex公式的能力。但是,现有深层神经网络(DNN)的固定计算结构在系统大小(即天线或用户的数量)方面缺乏灵活性。本文开发了一个双方图神经网络(BGNN)框架,这是一种可伸缩的DL解决方案,旨在多端纳斯纳波束形成优化。首先,MU-MISO系统的特征是二分图,其中两个不相交的顶点集(由传输天线和用户组成,都通过成对边缘连接。这些顶点互连状态是通过通道褪色系数建模的。因此,将通用的光束优化过程解释为重量双分图上的计算任务。这种方法将波束形成的优化过程分为多个用于单个天线顶点和用户顶点的次命。分离的顶点操作导致可扩展的光束成型计算,这些计算不变到系统大小。顶点操作是由一组DNN模块实现的,这些DNN模块共同构成了BGNN体系结构。在所有天线和用户中都重复使用相同的DNN,以使所得的学习结构变得灵活地对网络尺寸灵活。 BGNN的组件DNN在许多具有随机变化的网络尺寸的MU-MISO配置上进行了培训。结果,训练有素的BGNN可以普遍应用于任意的MU-MISO系统。数值结果验证了BGNN框架比常规方法的优势。
Deep learning (DL) techniques have been intensively studied for the optimization of multi-user multiple-input single-output (MU-MISO) downlink systems owing to the capability of handling nonconvex formulations. However, the fixed computation structure of existing deep neural networks (DNNs) lacks flexibility with respect to the system size, i.e., the number of antennas or users. This paper develops a bipartite graph neural network (BGNN) framework, a scalable DL solution designed for multi-antenna beamforming optimization. The MU-MISO system is first characterized by a bipartite graph where two disjoint vertex sets, each of which consists of transmit antennas and users, are connected via pairwise edges. These vertex interconnection states are modeled by channel fading coefficients. Thus, a generic beamforming optimization process is interpreted as a computation task over a weight bipartite graph. This approach partitions the beamforming optimization procedure into multiple suboperations dedicated to individual antenna vertices and user vertices. Separated vertex operations lead to scalable beamforming calculations that are invariant to the system size. The vertex operations are realized by a group of DNN modules that collectively form the BGNN architecture. Identical DNNs are reused at all antennas and users so that the resultant learning structure becomes flexible to the network size. Component DNNs of the BGNN are trained jointly over numerous MU-MISO configurations with randomly varying network sizes. As a result, the trained BGNN can be universally applied to arbitrary MU-MISO systems. Numerical results validate the advantages of the BGNN framework over conventional methods.