论文标题
关于两个线性复发序列的线性组合的大小
On the size of a linear combination of two linear recurrence sequences over function fields
论文作者
论文摘要
令$ g_n $和$ h_m $为两个非降级线性复发序列,该序列在一个函数字段$ f $上定义了一个$ \ mathbb {c} $,而让$μ$为$ f $的估值。我们证明,在适当的条件下,有实际可计算的常数$ C_1 $和$ C'$,因此bong \ begin {equation*} μ(g_n -h_m)\leqμ(g_n) + c'\ end {equation*}以$ \ max \ {n,m \}> c_1 $保持。
Let $ G_n $ and $ H_m $ be two non-degenerate linear recurrence sequences defined over a function field $ F $ in one variable over $ \mathbb{C} $, and let $ μ$ be a valuation on $ F $. We prove that under suitable conditions there are effectively computable constants $ c_1 $ and $ C' $ such that the bound \begin{equation*} μ(G_n - H_m) \leq μ(G_n) + C' \end{equation*} holds for $ \max \{n,m\} > c_1 $.