论文标题
快速radix-32近似DFT,用于1024梁数字射频波束成形
Fast Radix-32 Approximate DFTs for 1024-Beam Digital RF Beamforming
论文作者
论文摘要
离散的傅立叶变换(DFT)被广泛用于多光束数字波束形成。 DFT可以通过使用快速傅立叶变换(FFT)算法有效地实现,从而减少芯片区域,功耗,处理时间和其他硬件资源的消耗。本文提出了三个新的混合DFT 1024点DFT近似值及其各自的快速算法。与传统的FFT方法相比,这些近似DFT(ADFT)算法显着降低了电路的复杂性和功耗,同时交易了计算精度的细微损失,这对于在RF天线实施中的数字波束形成应用是可以接受的。尚未引入ADFT算法以超过$ n = 32 $的光束形成,但是本文预计对未来5G和6G系统的大量自适应阵列的需求。 ADFT的数字CMOS电路设计显示了电路复杂性和功耗指标的改善。模拟结果显示,与标准的Cooley-Tukey FFT相比,芯片面积高达48.5%,临界路径延迟相似或较低。时间面积和动态功率指标降低了66.0%。 1024点的ADFT梁形器产生的信号噪声比(SNR)在29.2---30.1 dB之间的增长,与精确的1024点DFT光束器(最差的情况)相比,使用AN FFT可以实现的损失$ 0.9 dB SNR增益。
The discrete Fourier transform (DFT) is widely employed for multi-beam digital beamforming. The DFT can be efficiently implemented through the use of fast Fourier transform (FFT) algorithms, thus reducing chip area, power consumption, processing time, and consumption of other hardware resources. This paper proposes three new hybrid DFT 1024-point DFT approximations and their respective fast algorithms. These approximate DFT (ADFT) algorithms have significantly reduced circuit complexity and power consumption compared to traditional FFT approaches while trading off a subtle loss in computational precision which is acceptable for digital beamforming applications in RF antenna implementations. ADFT algorithms have not been introduced for beamforming beyond $N = 32$, but this paper anticipates the need for massively large adaptive arrays for future 5G and 6G systems. Digital CMOS circuit designs for the ADFTs show the resulting improvements in both circuit complexity and power consumption metrics. Simulation results show similar or lower critical path delay with up to 48.5% lower chip area compared to a standard Cooley-Tukey FFT. The time-area and dynamic power metrics are reduced up to 66.0%. The 1024-point ADFT beamformers produce signal-to-noise ratio (SNR) gains between 29.2--30.1 dB, which is a loss of $\le$ 0.9 dB SNR gain compared to exact 1024-point DFT beamformers (worst case) realizable at using an FFT.