论文标题
旋转测试颗粒的混乱运动和底线进攻在被少量物质领域包围的schwarzschild黑洞的阴影中移动
Chaos motion and Periastron precession of spinning test particles moving in the vicinage of a Schwarzschild black hole surrounded by a quintessence matter field
论文作者
论文摘要
在目前的工作中,我们的主要目的是研究在典型物质领域(SQBH)的影响下,在施瓦茨柴尔德黑洞周围旋转测试颗粒的轨道。我们从SQBH周围的旋转测试粒子的动力学开始,该旋转测试粒子受极偶极近似下的Mathisson-Papapetou-Dixon(MPD)方程的控制,其中忽略了粒子的重力场和较高的多层。根据鞍点的类型,将有效潜力分类,并讨论混乱轨道的可能性。解决了SQBH周围旋转粒子的内部最稳定的圆形轨道(ISCO),以及参数$ s $(粒子的旋转)和$ε$(状态参数方程)的效果也是如此。后来,对Periastron prepession进行了研究,以进行一阶自旋校正,以使旋转粒子在SQBH周围的几乎圆形轨道中移动。据指出,添加粒子自旋对非旋转颗粒获得的结果进行了改造,并阐明了SQBH的一些有趣的观察性特性。此外,我们讨论了采用一阶自旋校正进行分析ISCO的后果,并将我们的结果与Schwarzschild黑洞进行比较,以确保当状态参数方程$ε= -1/3 $和归一化因子$α\α\至0 $时,它们在限制中保持一致。
In the present work, our main objective is to investigate the orbits of spinning test particles around a Schwarzschild black hole under the influence of a quintessence matter field (SQBH). We begin with the dynamics of the spinning test particles around SQBH which is governed by the Mathisson-Papapetrou-Dixon (MPD) equations under the pole-dipole approximation, where the gravitational field and the higher multipoles of the particle are neglected. Depending on the types of saddle points,the effective potential are classified and the possibility of chaotic orbits is discussed. The inner most stable circular orbits (ISCOs) of the spinning particle around SQBH are addressed, as are the effects of the parameters $S$ (particles' spin) and $ε$ (equation of state parameter). Later, Periastron precession is investigated up to the first-order spin correction for a spinning particle moving in nearly circular orbits around SQBH. It is noted that the addition of particle's spin revamps the results obtained for the non-spinning particles and also articulates the some interesting observational properties of the SQBH. Additionally, we discuss the ramifications of employing first-order spin corrections for analysing ISCOs, as well as compare our results to the Schwarzschild black hole to ensure that they are consistent in the limit when equation of state parameter $ε=-1/3$ and normalization factor $α\to 0$.