论文标题

上下文活动模型选择

Contextual Active Model Selection

论文作者

Liu, Xuefeng, Xia, Fangfang, Stevens, Rick L., Chen, Yuxin

论文摘要

虽然培训模型和标签数据是资源密集的,但存在大量的预培训模型和未标记的数据。为了有效利用这些资源,我们提出了一种积极选择预培训模型的方法,同时最大程度地减少标签成本。我们将其视为一个在线上下文的活动模型选择问题:在每回合中,学习者都会收到一个未标记的数据点作为上下文。目的是自适应选择最佳模型,以在限制标签请求时进行预测。为了解决这个问题,我们提出了cams,这是一种依赖两个新颖组成部分的上下文主动模型选择算法:(1)一种上下文模型选择机制,该机制利用上下文信息做出有关哪种模型可能在给定上下文中表现最佳的明智决策,以及(2)积极的查询组件,从何时策略性地选择数据何时策略性地选择了数据,以确定数据的何时为实验室成本大小,以整体化的成本大小,最大程度地大小。我们提供严格的理论分析,以实现对抗和随机设置下的遗憾和查询复杂性。此外,我们证明了算法对各种基准分类任务集合的有效性。值得注意的是,与CIFAR10和漂移基准的现有方法相比,CAM所需的标签工作量大大减少了(少于10%),同时实现了相似或更高的准确性。我们的代码可公开可用:https://github.com/xuefeng-cs/contextual-active-model-selection。

While training models and labeling data are resource-intensive, a wealth of pre-trained models and unlabeled data exists. To effectively utilize these resources, we present an approach to actively select pre-trained models while minimizing labeling costs. We frame this as an online contextual active model selection problem: At each round, the learner receives an unlabeled data point as a context. The objective is to adaptively select the best model to make a prediction while limiting label requests. To tackle this problem, we propose CAMS, a contextual active model selection algorithm that relies on two novel components: (1) a contextual model selection mechanism, which leverages context information to make informed decisions about which model is likely to perform best for a given context, and (2) an active query component, which strategically chooses when to request labels for data points, minimizing the overall labeling cost. We provide rigorous theoretical analysis for the regret and query complexity under both adversarial and stochastic settings. Furthermore, we demonstrate the effectiveness of our algorithm on a diverse collection of benchmark classification tasks. Notably, CAMS requires substantially less labeling effort (less than 10%) compared to existing methods on CIFAR10 and DRIFT benchmarks, while achieving similar or better accuracy. Our code is publicly available at: https://github.com/xuefeng-cs/Contextual-Active-Model-Selection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源