论文标题
部分可观测时空混沌系统的无模型预测
Vector-tensor gravity from a broken gauge symmetry
论文作者
论文摘要
在本文中,我们介绍了Yang-Mills类型的量表理论的矢量量重力理论,其中四个,自旋连接和矢量场与量规场的组成部分鉴定出来。这种设置导致一种理论,该理论包含在广义的Proca理论中。我们求解静态和球面对称时空,并表明有两个解决方案分支,其中一个度量是渐近的schwarzschild,即使动作有宇宙学常数,而另一个是指标是渐近的(抗)de sitter。此外,我们研究了矢量场对均质和各向同性空间的影响,发现它有助于度量的加速扩展。
In this paper we present a Yang-Mills type gauge theory of vector-tensor gravity, where the tetrad, the spin connection and vector field are identified with components of the gauge field. This setup leads to a theory that is contained in Generalized Proca theories. We solve for static and spherically symmetric space-time and show that there are two branches of solutions, one where the metric is asymptotically Schwarzschild even though there is a cosmological constant in the action, and another one where the metric is asymptotically (anti-)de Sitter. Also, we study the effect of the vector field on homogeneous and isotropic spacetimes, finding that it contributes to the accelerated expansion of the metric.