论文标题

改善了快乐设定问题的参数化复杂性

Improved Parameterized Complexity of Happy Set Problems

论文作者

Mizutani, Yosuke, Sullivan, Blair D.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We present fixed-parameter tractable (FPT) algorithms for two problems, Maximum Happy Set (MaxHS) and Maximum Edge Happy Set (MaxEHS)--also known as Densest k-Subgraph. Given a graph $G$ and an integer $k$, MaxHS asks for a set $S$ of $k$ vertices such that the number of $\textit{happy vertices}$ with respect to $S$ is maximized, where a vertex $v$ is happy if $v$ and all its neighbors are in $S$. We show that MaxHS can be solved in time $\mathcal{O}\left(2^\textsf{mw} \cdot \textsf{mw} \cdot k^2 \cdot |V(G)|\right)$ and $\mathcal{O}\left(8^\textsf{cw} \cdot k^2 \cdot |V(G)|\right)$, where $\textsf{mw}$ and $\textsf{cw}$ denote the $\textit{modular-width}$ and the $\textit{clique-width}$ of $G$, respectively. This resolves the open questions posed in literature. The MaxEHS problem is an edge-variant of MaxHS, where we maximize the number of $\textit{happy edges}$, the edges whose endpoints are in $S$. In this paper we show that MaxEHS can be solved in time $f(\textsf{nd})\cdot|V(G)|^{\mathcal{O}(1)}$ and $\mathcal{O}\left(2^{\textsf{cd}}\cdot k^2 \cdot |V(G)|\right)$, where $\textsf{nd}$ and $\textsf{cd}$ denote the $\textit{neighborhood diversity}$ and the $\textit{cluster deletion number}$ of $G$, respectively, and $f$ is some computable function. This result implies that MaxEHS is also fixed-parameter tractable by $\textit{twin cover number}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源