论文标题
MMOTU:多模式性卵巢肿瘤超声图像数据集用于无监督的跨域语义分割
MMOTU: A Multi-Modality Ovarian Tumor Ultrasound Image Dataset for Unsupervised Cross-Domain Semantic Segmentation
论文作者
论文摘要
卵巢癌是最有害的妇科疾病之一。通过计算机辅助技术在早期检测卵巢肿瘤可以有效降低死亡率。随着医疗标准的提高,超声图像被广泛应用于临床治疗中。但是,最近的值得注意的方法主要集中于单模式超声卵巢肿瘤分割或识别,这意味着仍然缺乏探索多模式超声卵巢肿瘤图像的表示能力的研究。为了解决这个问题,我们提出了包含1469 2D超声图像的多模式卵巢肿瘤超声(MMOTU)图像数据集,并具有170个具有像素和全球注释的对比度增强超声(CEUS)图像。基于MMOTU,我们主要关注无监督的跨域语义分割任务。为了解决域移位问题,我们提出了一个基于特征对齐的架构,名为Dual-Scheme域选择网络(DS2NET)。具体而言,我们首先设计源编码器和目标编码器来提取源和目标图像的两种特征。然后,我们提出域名选定的模块(DDSM)和域 - 宇宙选定的模块(DUSM),以两种样式(源方式或目标风格)中提取独特的通用特征。最后,我们融合了这两种功能,并将它们馈入源编码器和目标编码器以生成最终预测。对MMOTU图像数据集的大量比较实验和分析表明,DS2NET可以提高2D超声图像和CEUS图像的双向跨域适应的分割性能。我们提出的数据集和代码均可在https://github.com/cv516buaa/mmmotu_ds2net上找到。
Ovarian cancer is one of the most harmful gynecological diseases. Detecting ovarian tumors in early stage with computer-aided techniques can efficiently decrease the mortality rate. With the improvement of medical treatment standard, ultrasound images are widely applied in clinical treatment. However, recent notable methods mainly focus on single-modality ultrasound ovarian tumor segmentation or recognition, which means there still lacks researches on exploring the representation capability of multi-modality ultrasound ovarian tumor images. To solve this problem, we propose a Multi-Modality Ovarian Tumor Ultrasound (MMOTU) image dataset containing 1469 2d ultrasound images and 170 contrast enhanced ultrasonography (CEUS) images with pixel-wise and global-wise annotations. Based on MMOTU, we mainly focus on unsupervised cross-domain semantic segmentation task. To solve the domain shift problem, we propose a feature alignment based architecture named Dual-Scheme Domain-Selected Network (DS2Net). Specifically, we first design source-encoder and target-encoder to extract two-style features of source and target images. Then, we propose Domain-Distinct Selected Module (DDSM) and Domain-Universal Selected Module (DUSM) to extract the distinct and universal features in two styles (source-style or target-style). Finally, we fuse these two kinds of features and feed them into the source-decoder and target-decoder to generate final predictions. Extensive comparison experiments and analysis on MMOTU image dataset show that DS2Net can boost the segmentation performance for bidirectional cross-domain adaptation of 2d ultrasound images and CEUS images. Our proposed dataset and code are all available at https://github.com/cv516Buaa/MMOTU_DS2Net.