论文标题

通过彩虹匹配的图形包装问题的内核化

Kernelization for Graph Packing Problems via Rainbow Matching

论文作者

Bessy, Stéphane, Bougeret, Marin, Thilikos, Dimitrios M., Wiederrecht, Sebastian

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We introduce a new kernelization tool, called rainbow matching technique}, that is appropriate for the design of polynomial kernels for packing problems and their hitting counterparts. Our technique capitalizes on the powerful combinatorial results of [Graf, Harris, Haxell, SODA 2021]. We apply the rainbow matching technique on four (di)graph packing or hitting problems, namely the Triangle-Packing in Tournament problem (TPT), where we ask for a packing of $k$ directed triangles in a tournament, Directed Feedback Vertex Set in Tournament problem (FVST), where we ask for a (hitting) set of at most $k$ vertices which intersects all triangles of a tournament, the Induced 2-Path-Packing (IPP) where we ask for a packing of $k$ induced paths of length two in a graph and Induced 2-Path Hitting Set problem (IPHS), where we ask for a (hitting) set of at most $k$ vertices which intersects all induced paths of length two in a graph. The existence of a sub-quadratic kernels for these problems was proven for the first time in [Fomin, Le, Lokshtanov, Saurabh, Thomassé, Zehavi. ACM Trans. Algorithms, 2019], where they gave a kernel of $O(k^{3/2})$ vertices for the two first problems and $O(k^{5/3})$ vertices for the two last. In the same paper it was questioned whether these bounds can be (optimally) improved to linear ones. Motivated by this question, we apply the rainbow matching technique and prove that TPT and FVST admit (almost linear) kernels of $k^{1+\frac{O(1)}{\sqrt{\log{k}}}}$ vertices and that IPP and IPHS admit kernels of $O(k)$ vertices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源