论文标题
事实证明,对手稳健的最接近原型分类器
Provably Adversarially Robust Nearest Prototype Classifiers
论文作者
论文摘要
最近的原型分类器(NPC)分配给每个输入点,相对于选择的距离度量,最近原型的标签。 NPC的直接优势是决定是可解释的。先前的工作可以在使用相同的NPC时使用相同的$ \ ell_p $ -distance时,在$ \ ell_p $ -threat模型中的最小对抗扰动上提供下限。在本文中,我们在使用$ \ ell_p $ distances和$ \ ell_q $ -threat模型的$ p,q \ in \ in \ {1,2,\ infty \} $时提供了有关复杂性的完整讨论。特别是,当使用$ \ ell_2 $ distance并在其他情况下,使用$ \ ell_2 $ distance并改善了下限时,我们为\ emph {Exact}计算提供了可扩展的算法。使用有效的改进的下限,我们将训练我们可证明的对抗性NPC(PNPC),用于MNIST,其具有比神经网络更好的$ \ ell_2 $ - 固定保证。此外,我们符合我们的知识,第一个认证结果W.R.T.对于LPIP的感知度量标准,它被认为是图像分类比$ \ ell_p $ -balls更现实的威胁模型。我们的PNPC在CIFAR10上具有比在(Laidlaw等,2021)中报道的经验鲁棒精度更高的鲁棒精度。该代码在我们的存储库中可用。
Nearest prototype classifiers (NPCs) assign to each input point the label of the nearest prototype with respect to a chosen distance metric. A direct advantage of NPCs is that the decisions are interpretable. Previous work could provide lower bounds on the minimal adversarial perturbation in the $\ell_p$-threat model when using the same $\ell_p$-distance for the NPCs. In this paper we provide a complete discussion on the complexity when using $\ell_p$-distances for decision and $\ell_q$-threat models for certification for $p,q \in \{1,2,\infty\}$. In particular we provide scalable algorithms for the \emph{exact} computation of the minimal adversarial perturbation when using $\ell_2$-distance and improved lower bounds in other cases. Using efficient improved lower bounds we train our Provably adversarially robust NPC (PNPC), for MNIST which have better $\ell_2$-robustness guarantees than neural networks. Additionally, we show up to our knowledge the first certification results w.r.t. to the LPIPS perceptual metric which has been argued to be a more realistic threat model for image classification than $\ell_p$-balls. Our PNPC has on CIFAR10 higher certified robust accuracy than the empirical robust accuracy reported in (Laidlaw et al., 2021). The code is available in our repository.