论文标题
在动能密度功能上:密度衍生阶的极限
On the Kinetic Energy Density Functional: The Limit of the Density Derivative Order
论文作者
论文摘要
在``无轨道''密度功能理论中,开发一般动能密度(KED)至关重要,表示为$ t(\ Mathbf {r})$。这通常是通过经验校正和增强,梯度扩展,机器学习或公理方法来找到可以满足身体必需品的形式的方法来完成的。在所有情况下,确定最大的空间密度衍生订单,$ m $ in,$ t(\ mathbf {r})$至关重要。做了很多努力,但是没有一个事实证明的一般或结论性,也没有关于如何设置$ m $的明确指南。在这项工作中,我们发现,通过强加KED有限,$ M = D+1 $对于尺寸$ d $的系统。这与观察结果一致,并为系统地开发更准确的KED提供了所需的指南。
Within ``orbital-free'' density functional theory, it is essential to develop general kinetic energy density (KED), denoted as $t(\mathbf{r})$. This is usually done by empirical corrections and enhancements, gradient expansions, machine learning, or axiomatic approaches to find forms that satisfy physical necessities. In all cases, it is crucial to determine the largest spatial density derivative order, $m$ in, $t(\mathbf{r})$. There have been many efforts to do so, but none have proven general or conclusive and there is no clear guide on how to set $m$. In this work, we found that, by imposing KED finitude, $m=D+1$ for systems of dimension $D$. This is consistent with observations and provides a needed guide for systematically developing more accurate KEDs.