论文标题
柔性零膨胀的泊松仪模型,并应用于微生物组读数计数
A Flexible Zero-Inflated Poisson-Gamma model with application to microbiome read counts
论文作者
论文摘要
在微生物组研究中,使用来自肠道微生物群等微生物种群的样本来估计这些类群的人口比例。但是,由于采样和预处理步骤中引入的偏见,这些观察到的分类群的丰度可能不会反映生态系统中真正的分类群丰度模式。重复的措施(包括纵向研究设计)可能是减轻观察到的丰度和真正的潜在丰富性之间差异的潜在解决方案。然而,被广泛观察到的零通胀和过度分散问题可能会扭曲旨在将丰富分类群与关注的协变量相关联的下游统计分析。为此,我们提出了一个零充气的泊松伽玛(ZIPG)框架,以应对上述挑战。从测量误差的角度来看,我们通过将泊松回归中的平均参数分解为真实的丰度水平,以及从微生物生态系统中抽样变异性的乘法测量方法来适应观察和真理之间的差异。然后,我们通过将平均丰度和变异性连接到不同的协变量,并为参数估计和假设测试构建有效的统计推理过程,从而提供一个灵活的模型。通过全面的仿真研究和实际数据应用,提出的ZIPG方法为明显的差异可变性和丰度提供了重要的见解。
In microbiome studies, it is of interest to use a sample from a population of microbes, such as the gut microbiota community, to estimate the population proportion of these taxa. However, due to biases introduced in sampling and preprocessing steps, these observed taxa abundances may not reflect true taxa abundance patterns in the ecosystem. Repeated measures, including longitudinal study designs, may be potential solutions to mitigate the discrepancy between observed abundances and true underlying abundances. Yet, widely observed zero-inflation and over-dispersion issues can distort downstream statistical analyses aiming to associate taxa abundances with covariates of interest. To this end, we propose a Zero-Inflated Poisson Gamma (ZIPG) framework to address the aforementioned challenges. From a perspective of measurement errors, we accommodate the discrepancy between observations and truths by decomposing the mean parameter in Poisson regression into a true abundance level and a multiplicative measurement of sampling variability from the microbial ecosystem. Then, we provide a flexible model by connecting both mean abundance and the variability to different covariates, and build valid statistical inference procedures for both parameter estimation and hypothesis testing. Through comprehensive simulation studies and real data applications, the proposed ZIPG method provides significant insights into distinguished differential variability and abundance.