论文标题
$ \ mathbb {p}^2 $上的一些betti数字数量
Some Betti numbers of the moduli of 1-dimensional sheaves on $\mathbb{P}^2$
论文作者
论文摘要
令$ m(d,χ)$带有$(d,χ)= 1 $是$ \ mathbb {p}^2 $在度量$ d $的曲线和Euler特征$χ$上支撑的可半轴束的模量空间。 Markman的结果是$ m(d,χ)$的$ M(d,χ)$的同型$ h^*(m(d,χ),\ Mathbb {z})$是同构的。 W. Pi和J. Shen描述了由$ 3D-7 $发电机组成的$ a^*(m(d,χ))$的最小生成集,它们也表明它们与$ a^{\ geq d-2}(m(m(d,χ))中没有关系。我们计算了两个贝蒂数字$ b_ {2(d-1)$和$ b_ {2d} $的$ m(d,χ)$,作为推论,我们表明,pi-shen给出的发电机在$ a^{\ geq d-1}(\ geq d-1}(m(d,χ)$中,但有三个lineal lineeal specialss $ n $ a^d d(m)
Let $M(d,χ)$ with $(d,χ)=1$ be the moduli space of semistable sheaves on $\mathbb{P}^2$ supported on curves of degree $d$ and with Euler characteristic $χ$. The cohomology ring $H^*(M(d,χ),\mathbb{Z})$ of $M(d,χ)$ is isomorphic to its Chow ring $A^*(M(d,χ))$ by Markman's result. W. Pi and J. Shen have described a minimal generating set of $A^*(M(d,χ))$ consisting of $3d-7$ generators, which they also showed to have no relation in $A^{\geq d-2}(M(d,χ))$. We compute the two Betti numbers $b_{2(d-1)}$ and $b_{2d}$ of $M(d,χ)$ and as a corollary we show that the generators given by Pi-Shen have no relations in $A^{\geq d-1}(M(d,χ))$ but do have three linearly independent relations in $A^d(M(d,χ))$.