论文标题

动作条件按需运动产生

Action-conditioned On-demand Motion Generation

论文作者

Lu, Qiujing, Zhang, Yipeng, Lu, Mingjian, Roychowdhury, Vwani

论文摘要

我们提出了一个新颖的框架,按需运动产生(ODMO),用于生成现实和多样化的长期3D人体运动序列,该序列仅以具有额外的自定义能力为基础的动作类型。 ODMO在三个公共数据集(HumanAct12,UESTC和MOCAP)上进行评估时,对所有传统运动评估指标的SOTA方法显示了改进。此外,我们提供定性评估和定量指标,展示了我们框架提供的几种首要的自定义功能,包括模式发现,插值和轨迹自定义。这些功能显着扩大了此类运动产生模型的潜在应用的范围。 The novel on-demand generative capabilities are enabled by innovations in both the encoder and decoder architectures: (i) Encoder: Utilizing contrastive learning in low-dimensional latent space to create a hierarchical embedding of motion sequences, where not only the codes of different action types form different groups, but within an action type, codes of similar inherent patterns (motion styles) cluster together, making them readily discoverable; (ii)解码器:使用层次解码策略,该策略首先重建运动轨迹,然后用于重建整个运动序列。这样的架构可以有效地控制轨迹控制。我们的代码发布在GitHub页面:https://github.com/roychowdhuryresearch/odmo

We propose a novel framework, On-Demand MOtion Generation (ODMO), for generating realistic and diverse long-term 3D human motion sequences conditioned only on action types with an additional capability of customization. ODMO shows improvements over SOTA approaches on all traditional motion evaluation metrics when evaluated on three public datasets (HumanAct12, UESTC, and MoCap). Furthermore, we provide both qualitative evaluations and quantitative metrics demonstrating several first-known customization capabilities afforded by our framework, including mode discovery, interpolation, and trajectory customization. These capabilities significantly widen the spectrum of potential applications of such motion generation models. The novel on-demand generative capabilities are enabled by innovations in both the encoder and decoder architectures: (i) Encoder: Utilizing contrastive learning in low-dimensional latent space to create a hierarchical embedding of motion sequences, where not only the codes of different action types form different groups, but within an action type, codes of similar inherent patterns (motion styles) cluster together, making them readily discoverable; (ii) Decoder: Using a hierarchical decoding strategy where the motion trajectory is reconstructed first and then used to reconstruct the whole motion sequence. Such an architecture enables effective trajectory control. Our code is released on the Github page: https://github.com/roychowdhuryresearch/ODMO

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源