论文标题

表示图像模式的表示

Representation Learning of Image Schema

论文作者

Yunus, Fajrian, Clavel, Chloé, Pelachaud, Catherine

论文摘要

图像架构是一种反复的推理模式,其中一个实体被映射到另一个实体。图像模式类似于概念上的隐喻,也与隐喻性手势有关。我们的主要目标是为体现的对话代理产生隐喻性手势。 我们提出了一种学习图像模式的矢量表示的技术。据我们所知,这是解决该问题的第一部工作。我们的技术使用Ravenet等人的算法来计算文本输入中的图像模式,以及我们用作基本单词嵌入技术来计算图像架构的最终向量表示。我们的表示学习技术通过聚类来起作用:属于同一图像模式的单词嵌入向量应相对彼此近距离,从而形成群集。 将图像架构表示为向量,也有可能有一个观念,即某些图像模式与彼此更近或更相似,因为向量之间的距离是相应图像模式之间的相似性的代理。因此,在获得图像模式的矢量表示后,我们计算了这些向量之间的距离。基于这些,我们创建可视化以说明不同图像模式之间的相对距离。

Image schema is a recurrent pattern of reasoning where one entity is mapped into another. Image schema is similar to conceptual metaphor and is also related to metaphoric gesture. Our main goal is to generate metaphoric gestures for an Embodied Conversational Agent. We propose a technique to learn the vector representation of image schemas. As far as we are aware of, this is the first work which addresses that problem. Our technique uses Ravenet et al's algorithm which we use to compute the image schemas from the text input and also BERT and SenseBERT which we use as the base word embedding technique to calculate the final vector representation of the image schema. Our representation learning technique works by clustering: word embedding vectors which belong to the same image schema should be relatively closer to each other, and thus form a cluster. With the image schemas representable as vectors, it also becomes possible to have a notion that some image schemas are closer or more similar to each other than to the others because the distance between the vectors is a proxy of the dissimilarity between the corresponding image schemas. Therefore, after obtaining the vector representation of the image schemas, we calculate the distances between those vectors. Based on these, we create visualizations to illustrate the relative distances between the different image schemas.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源