论文标题
基尔chhoff的现行法律和流离失所
Kirchhoff's Current Law with Displacement Current
论文作者
论文摘要
Kirchhoff目前的法律是设计电路的必不可少的工具,该电路的运行速度非常快,比纳秒更快。但是基尔乔夫的电流通常被识别为颗粒的流动。连续性方程式或麦克斯韦 - 安培定律表明,位移当前$ \ textbf {plus} $粒子电流的总和由麦克斯韦方程和基希霍夫定律保存。柯乔夫(Kirchoff)从早期开始包括其法律范围的流离失所电流。这种Kirchhoff电流(包括位移电流)在生物学离子通道中的空间位置不会变化。使用包括粒子和位移电流在内的量子力学的BOHM表示,分析了纳秒中的电子电路切换。
Kirchhoff's Current Law is an essential tool in the design of circuits that operate very quickly, faster than nanoseconds. But Kirchhoff's current is often identified as the flow of particles. The continuity equation or the Maxwell-Ampere law shows that the sum of displacement current $\textbf{plus}$ particle current is conserved by Maxwell's equations and Kirchhoff's law. Kirchoff included the displacement current in the current of his law, from early on. This Kirchhoff current (including the displacement current) does not vary with spatial location in the ionic channels of biology. Electronic circuits switching in nanoseconds are analyzed using the Bohm representation of quantum mechanics including particle and displacement current.