论文标题
从自由玻色子系统中绝缘状态开始的量子淬灭后的rényi纠缠熵
Rényi entanglement entropy after a quantum quench starting from insulating states in a free boson system
论文作者
论文摘要
我们研究了一维自由玻色子系统的量子脉冲开始后,量子淬灭之后,研究了时间依赖性的rényi纠缠熵。发现第二个rényi纠缠熵是由矩阵的永久对数的负元素,该基质由时间依赖性的单粒子相关函数组成。从这种关系和永久性不平等中,我们获得了满足体积法律纠缠增长的严格条件。我们还成功地通过对永久性的蛮力计算来计算雷尼纠缠熵的时间演变。我们讨论了我们的发现可能应用于非相互作用的骨系统的实时动力学。
We investigate the time-dependent Rényi entanglement entropy after a quantum quench starting from the Mott-insulating and charge-density-wave states in a one-dimensional free boson system. The second Rényi entanglement entropy is found to be the negative of the logarithm of the permanent of a matrix consisting of time-dependent single-particle correlation functions. From this relation and a permanent inequality, we obtain rigorous conditions for satisfying the volume-law entanglement growth. We also succeed in calculating the time evolution of the Rényi entanglement entropy in unprecedentedly large systems by brute-force computations of the permanent. We discuss possible applications of our findings to the real-time dynamics of noninteracting bosonic systems.