论文标题
旋转随机场的几何形状和拓扑
Geometry and topology of spin random fields
论文作者
论文摘要
自旋(球形)随机场在许多物理应用中非常重要,特别是它们在宇宙学中起关键作用,尤其是与宇宙微波背景辐射的分析有关。这些对象可以看作是2-sphere切线束的第三络合物张量功率的随机部分。在本文中,我们讨论如何表征他们的预期几何形状和拓扑。特别是,我们研究了在缩放假设下的渐近行为,几何和拓扑功能的一般类别,包括杀死Lipschitz的曲率和(正确定义)游览集的Betti数字;我们涵盖了固定的旋转参数的情况。在单色场的特殊情况下(即旋转随机本征函数),我们的结果特别明确。我们展示了它们的渐近行为是非普遍的,我们可以在贝里的随机波和Bargmann-fock的模型中获得特定复杂版本,作为新的广义模型的子案例,具体取决于自旋参数s的分歧率。
Spin (spherical) random fields are very important in many physical applications, in particular they play a key role in Cosmology, especially in connection with the analysis of the Cosmic Microwave Background radiation. These objects can be viewed as random sections of the s-th complex tensor power of the tangent bundle of the 2-sphere. In this paper, we discuss how to characterize their expected geometry and topology. In particular, we investigate the asymptotic behaviour, under scaling assumptions, of general classes of geometric and topological functionals including Lipschitz-Killing Curvatures and Betti numbers for (properly defined) excursion sets; we cover both the cases of fixed and diverging spin parameters s. In the special case of monochromatic fields (i.e., spin random eigenfunctions) our results are particularly explicit; we show how their asymptotic behaviour is non-universal and we can obtain in particular complex versions of Berry's random waves and of Bargmann-Fock's models as subcases of a new generalized model, depending on the rate of divergence of the spin parameter s.