论文标题

DHGE:链接预测和实体键入的双视图超相关知识图嵌入

DHGE: Dual-View Hyper-Relational Knowledge Graph Embedding for Link Prediction and Entity Typing

论文作者

Luo, Haoran, E, Haihong, Tan, Ling, Zhou, Gengxian, Yao, Tianyu, Wan, Kaiyang

论文摘要

在对知识图(kgs)的表示领域中,超级关系的事实由主要三重和几个辅助属性 - 值描述组成,这被认为比基于三重的事实更全面,更具体。但是,当前可用的单个视图中可用的超相关KG嵌入方法在应用中受到限制,因为它们削弱了代表实体之间隶属关系的层次结构。为了克服这一局限性,我们提出了一个双视性超相关KG结构(DH-KG),该结构包含了实体的超相关实例视图,以及针对从实体层次抽象的概念的超相关本体论视图。本文首次定义了DH-KG上的链接预测和实体键入任务,并构建了从Wikidata提取的两个DH-KG数据集JW44K-6K,基于医疗数据提取了HTDM。此外,我们提出了DHGE,这是一种基于Gran编码器,HGNN和联合学习的DH-KG嵌入模型。根据实验结果,DHGE在DH-KG上的表现优于基线模型。最后,我们提供了一个如何使用该技术来治疗高血压的示例。我们的模型和新数据集公开可用。

In the field of representation learning on knowledge graphs (KGs), a hyper-relational fact consists of a main triple and several auxiliary attribute-value descriptions, which is considered more comprehensive and specific than a triple-based fact. However, currently available hyper-relational KG embedding methods in a single view are limited in application because they weaken the hierarchical structure that represents the affiliation between entities. To overcome this limitation, we propose a dual-view hyper-relational KG structure (DH-KG) that contains a hyper-relational instance view for entities and a hyper-relational ontology view for concepts that are abstracted hierarchically from the entities. This paper defines link prediction and entity typing tasks on DH-KG for the first time and constructs two DH-KG datasets, JW44K-6K, extracted from Wikidata, and HTDM based on medical data. Furthermore, we propose DHGE, a DH-KG embedding model based on GRAN encoders, HGNNs, and joint learning. DHGE outperforms baseline models on DH-KG, according to experimental results. Finally, we provide an example of how this technology can be used to treat hypertension. Our model and new datasets are publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源