论文标题

学习具有硬约束的系统的可区分求解器

Learning differentiable solvers for systems with hard constraints

论文作者

Négiar, Geoffrey, Mahoney, Michael W., Krishnapriyan, Aditi S.

论文摘要

我们介绍了一种实用方法,以对由神经网络(NNS)定义的功能强制局部差分方程(PDE)约束,并具有高度的准确性和最大的耐受性。我们开发一个可区分的PDE约束层,可以将其纳入任何NN体系结构。我们的方法利用可区分的优化和隐式函数定理来有效地执行物理约束。受词典学习的启发,我们的模型学习了一个功能系列,每个功能都定义了从PDE参数到PDE解决方案的映射。在推理时,该模型通过解决PDE受限的优化问题来找到学历家族中功能的最佳线性组合。我们的方法提供了有关感兴趣领域的连续解决方案,这些解决方案准确地满足了所需的物理约束。我们的结果表明,与对无约束目标的训练相比,将硬约束直接纳入NN体系结构的测试错误要低得多。

We introduce a practical method to enforce partial differential equation (PDE) constraints for functions defined by neural networks (NNs), with a high degree of accuracy and up to a desired tolerance. We develop a differentiable PDE-constrained layer that can be incorporated into any NN architecture. Our method leverages differentiable optimization and the implicit function theorem to effectively enforce physical constraints. Inspired by dictionary learning, our model learns a family of functions, each of which defines a mapping from PDE parameters to PDE solutions. At inference time, the model finds an optimal linear combination of the functions in the learned family by solving a PDE-constrained optimization problem. Our method provides continuous solutions over the domain of interest that accurately satisfy desired physical constraints. Our results show that incorporating hard constraints directly into the NN architecture achieves much lower test error when compared to training on an unconstrained objective.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源