论文标题

Banach空间总是产生操作员的八面体空间

Banach spaces which always produce octahedral spaces of operators

论文作者

Zoca, Abraham Rueda

论文摘要

我们表征了那些满足$ l(y,x)$的Banach Spaces $ x $,对于每个非零Banach Space $ y $。他们是那些满足的人,对于每个有限的尺寸子空间$ z $,$ \ ell_ \ infty $在$ x $ of $ x $ of $ \ ell_1 $ -1 $ -ORTONONAL至$ z $的一部分中都可以有限地说明。我们还证明,$ l(y,x)$在每$ y $的情况下都是八人体,并且只有$ l(\ ell_p^n,x)$是\ in \ mathbb n $和$ 1 <p <\ infty $的$ n \ in contaheDral。最后,我们找到了满足上述条件的Banach空间的示例,例如带有八面体标准的$ \ lip(m)$空间,或带有Daugavet属性的$ L_1 $ - 售价。

We characterise those Banach spaces $X$ which satisfy that $L(Y,X)$ is octahedral for every non-zero Banach space $Y$. They are those satisfying that, for every finite dimensional subspace $Z$, $\ell_\infty$ can be finitely-representable in a part of $X$ kind of $\ell_1$-orthogonal to $Z$. We also prove that $L(Y,X)$ is octahedral for every $Y$ if, and only if, $L(\ell_p^n,X)$ is octahedral for every $n\in\mathbb N$ and $1<p<\infty$. Finally, we find examples of Banach spaces satisfying the above conditions like $\Lip(M)$ spaces with octahedral norms or $L_1$-preduals with the Daugavet property.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源