论文标题
通过时空特征互动增强时空视频超分辨率
Enhancing Space-time Video Super-resolution via Spatial-temporal Feature Interaction
论文作者
论文摘要
时空视频超分辨率(STVSR)的目标是提高帧速率(也称为时间分辨率)和给定视频的空间分辨率。最近的方法使用端到端的深神经网络解决了STVSR。一个流行的解决方案是首先提高视频的帧速率。然后在不同的框架功能之间进行特征改进;最后增加了这些功能的空间分辨率。在此过程中,仔细利用了不同帧的特征之间的时间相关性。然而,尽管也不强调,尽管也非常重要,但不同(空间)分辨率的特征之间的空间相关性。在本文中,我们提出了一个时空特征交互网络,以通过在不同框架和空间分辨率的特征之间利用空间和时间相关来增强STVSR。具体而言,引入时空框架插值模块以同时和互动性地插值低分辨率和高分辨率的中间框架特征。随后部署了空间 - 周期性的本地和全局细化模块,以利用不同特征之间的空间 - 周期性相关性进行细化。最后,采用了新的运动一致性损失来增强重建帧之间的运动连续性。我们对三个标准基准VID4,VIMEO-90K和ADOBE240进行实验,结果表明,我们的方法将最新方法的状态提高了相当大。我们的代码将在https://github.com/yuezijie/stinet-pace time-video-super-resolution上找到。
The target of space-time video super-resolution (STVSR) is to increase both the frame rate (also referred to as the temporal resolution) and the spatial resolution of a given video. Recent approaches solve STVSR using end-to-end deep neural networks. A popular solution is to first increase the frame rate of the video; then perform feature refinement among different frame features; and last increase the spatial resolutions of these features. The temporal correlation among features of different frames is carefully exploited in this process. The spatial correlation among features of different (spatial) resolutions, despite being also very important, is however not emphasized. In this paper, we propose a spatial-temporal feature interaction network to enhance STVSR by exploiting both spatial and temporal correlations among features of different frames and spatial resolutions. Specifically, the spatial-temporal frame interpolation module is introduced to interpolate low- and high-resolution intermediate frame features simultaneously and interactively. The spatial-temporal local and global refinement modules are respectively deployed afterwards to exploit the spatial-temporal correlation among different features for their refinement. Finally, a novel motion consistency loss is employed to enhance the motion continuity among reconstructed frames. We conduct experiments on three standard benchmarks, Vid4, Vimeo-90K and Adobe240, and the results demonstrate that our method improves the state of the art methods by a considerable margin. Our codes will be available at https://github.com/yuezijie/STINet-Space-time-Video-Super-resolution.