论文标题

费米符号问题的普遍性和关键指数

Universality and Critical Exponents of the Fermion Sign Problem

论文作者

Mondaini, Rubem, Tarat, Sabyasachi, Scalettar, Richard T.

论文摘要

Fermion标志问题的初始特征集中在其发展上,以空间晶格尺寸$ $ $ $ l $和反向温度$β$,强调了平均标志$ \ langle {\ cal S} \ langle {\ cal s} \ rangle $的指数性质的含义,其解决方案的复杂性和相关的量子型材料的相关局限性的强度是强的材料。早期的兴趣也是$ \ langle {\ cal s} \ rangle $带有密度$ρ$的$,要么是因为相称的填充通常与特殊的对称性有关,因此符号问题不存在,或者是因为特定的填充物通常是主要目标,例如〜最大程度地降低了过度导入过渡温度的密度(〜在这里,我们描述了对符号问题的新分析,该分析表明{\ it旋转分辨}符号$ \ langle {\ cal s}_σ\ rangle $已经具有传统上与订单参数相关的普遍行为的签名,即使是在对对称性保护的情况下,即使没有使$ \ langle {\ langle {\ cal s}}的对称性保护也没有。适当缩放后,$ \ langle {\ cal s}_σ\ rangle $展示了通用的交叉和数据崩溃。此外,我们表明这些行为发生在三个良好理解模型的量子临界点附近,这些模型表现出二阶或kosterlitz-无与伦比的相变。我们的结果为使用平均符号作为最小相关器的方式铺平了道路,该符号可以描述各种费米子多体问题中的量子关键。

Initial characterizations of the fermion sign problem focused on its evolution with spatial lattice size $L$ and inverse temperature $β$, emphasizing the implications of the exponential nature of the decay of the average sign $\langle {\cal S} \rangle$ for the complexity of its solution and associated limitations of quantum Monte Carlo studies of strongly correlated materials. Early interest was also on the evolution of $\langle {\cal S} \rangle$ with density $ρ$, either because commensurate filling is often associated with special symmetries for which the sign problem is absent or because particular fillings are often primary targets, e.g.~those densities which maximize superconducting transition temperature (the top of the `dome' of cuprate systems). Here we describe a new analysis of the sign problem, which demonstrates that the {\it spin-resolved} sign $\langle {\cal S}_σ\rangle$ already possesses signatures of universal behavior traditionally associated with order parameters, even in the absence of symmetry protection that makes $\langle {\cal S} \rangle = 1$. When appropriately scaled, $\langle {\cal S}_σ\rangle$ exhibits universal crossings and data collapse. Moreover, we show these behaviors occur in the vicinity of quantum critical points of three well-understood models, exhibiting either second-order or Kosterlitz-Thouless phase transitions. Our results pave the way for using the average sign as a minimal correlator that can potentially describe quantum criticality in a variety of fermionic many-body problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源