论文标题

时间是重要的:视频变形金刚的时间自学

Time Is MattEr: Temporal Self-supervision for Video Transformers

论文作者

Yun, Sukmin, Kim, Jaehyung, Han, Dongyoon, Song, Hwanjun, Ha, Jung-Woo, Shin, Jinwoo

论文摘要

了解视频的时间动态是学习更好的视频表示的重要方面。最近,由于其能力捕获了输入序列的长期依赖性,因此对基于变压器的建筑设计进行了广泛的探索。但是,我们发现这些视频变压器仍然有偏见地学习空间动力学而不是时间动力学,而伪造的虚假相关性对于它们的性能至关重要。根据观察结果,我们设计了简单而有效的自我监督任务,以便视频模型更好地学习时间动态。具体而言,对于依据空间偏差,我们的方法将视频帧的时间顺序学习为额外的自我划分,并强制执行随机洗牌的框架以具有较低的信心输出。此外,我们的方法还学习了连续帧之间视频令牌的时间流向,以增强与时间动力学的相关性。在各种视频动作识别任务下,我们证明了我们的方法的有效性及其与最先进的视频变压器的兼容性。

Understanding temporal dynamics of video is an essential aspect of learning better video representations. Recently, transformer-based architectural designs have been extensively explored for video tasks due to their capability to capture long-term dependency of input sequences. However, we found that these Video Transformers are still biased to learn spatial dynamics rather than temporal ones, and debiasing the spurious correlation is critical for their performance. Based on the observations, we design simple yet effective self-supervised tasks for video models to learn temporal dynamics better. Specifically, for debiasing the spatial bias, our method learns the temporal order of video frames as extra self-supervision and enforces the randomly shuffled frames to have low-confidence outputs. Also, our method learns the temporal flow direction of video tokens among consecutive frames for enhancing the correlation toward temporal dynamics. Under various video action recognition tasks, we demonstrate the effectiveness of our method and its compatibility with state-of-the-art Video Transformers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源