论文标题
型号编码的循环编码,以改善重建和编辑性
Cycle Encoding of a StyleGAN Encoder for Improved Reconstruction and Editability
论文作者
论文摘要
GAN倒置旨在将输入图像倒入预训练GAN的潜在空间中。尽管GAN倒置最近取得了进步,但减轻失真和编辑性之间的权衡仍然存在挑战,即准确地重建输入图像并以较小的视觉质量下降来编辑倒置图像。最近提出的关键调谐模型通过使用两步方法将输入图像转换为潜在代码(称为枢轴代码),然后改变生成器,以便可以准确地映射到Pivot代码中,从而使输入图像首先倒入潜在的代码,从而取得了重大进展。在这里,我们表明可以通过适当的枢轴代码设计来改进重建和编辑性。我们提出了一种简单而有效的方法,称为“循环编码”,以提供高质量的枢轴代码。我们方法的关键思想是根据周期方案在不同空间中逐步训练编码器:w-> w+ - > w。该训练方法保留了W+空间的特性,即W+的低畸变的高编辑性。为了进一步减少失真,我们还建议使用基于优化的方法来完善枢轴代码,其中引入正则化项以减少编辑性的降解。对几种最新方法的定性和定量比较证明了我们方法的优势。
GAN inversion aims to invert an input image into the latent space of a pre-trained GAN. Despite the recent advances in GAN inversion, there remain challenges to mitigate the tradeoff between distortion and editability, i.e. reconstructing the input image accurately and editing the inverted image with a small visual quality drop. The recently proposed pivotal tuning model makes significant progress towards reconstruction and editability, by using a two-step approach that first inverts the input image into a latent code, called pivot code, and then alters the generator so that the input image can be accurately mapped into the pivot code. Here, we show that both reconstruction and editability can be improved by a proper design of the pivot code. We present a simple yet effective method, named cycle encoding, for a high-quality pivot code. The key idea of our method is to progressively train an encoder in varying spaces according to a cycle scheme: W->W+->W. This training methodology preserves the properties of both W and W+ spaces, i.e. high editability of W and low distortion of W+. To further decrease the distortion, we also propose to refine the pivot code with an optimization-based method, where a regularization term is introduced to reduce the degradation in editability. Qualitative and quantitative comparisons to several state-of-the-art methods demonstrate the superiority of our approach.