论文标题
部分可观测时空混沌系统的无模型预测
TestSelector: Automatic Test Suite Selection for Student Projects -- Extended Version
论文作者
论文摘要
计算机科学课程讲师通常必须创建全面的测试套件来评估编程作业。这种测试套件的创建通常并不小,因为它涉及从一组(半)随机生成的测试中选择有限数量的测试。在考虑所需的大型测试输入(例如评估算法练习)时,测试选择的手动策略不会扩展。为了促进此过程,我们提出了TestSelector,这是一个新的框架,用于自动选择用于学生项目的最佳测试套件。与现有方法相比,Testelector的关键优势在于,它可以通过任意复杂的代码覆盖量度量很容易扩展,而不需要将这些措施编码为确切约束求解器的逻辑。我们通过支持一系列经典的代码覆盖措施来扩展测试仪的灵活性,并使用它为许多现实世界中的算法项目选择测试套件,进一步表明,所选的测试套件在学生代码中的发现错误中随机选择了。
Computer Science course instructors routinely have to create comprehensive test suites to assess programming assignments. The creation of such test suites is typically not trivial as it involves selecting a limited number of tests from a set of (semi-)randomly generated ones. Manual strategies for test selection do not scale when considering large testing inputs needed, for instance, for the assessment of algorithms exercises. To facilitate this process, we present TestSelector, a new framework for automatic selection of optimal test suites for student projects. The key advantage of TestSelector over existing approaches is that it is easily extensible with arbitrarily complex code coverage measures, not requiring these measures to be encoded into the logic of an exact constraint solver. We demonstrate the flexibility of TestSelector by extending it with support for a range of classical code coverage measures and using it to select test suites for a number of real-world algorithms projects, further showing that the selected test suites outperform randomly selected ones in finding bugs in students' code.