论文标题
关于细胞聚集现象的连续建模
On continuum modeling of cell aggregation phenomena
论文作者
论文摘要
细胞聚集体在生物系统的演化中起重要作用,例如肿瘤生长,组织扩散,伤口愈合和生物膜形成。原则上,对这种生物系统的分析包括检查细胞 - 细胞相互作用与细胞 - 玛尔trix相互作用的相互作用。这两种相互作用类型主要驱动细胞聚集体的动力学,而细胞聚集体本质上是从平衡中脱离的。在这里,我们提出了一种非线性连续性力学公式和相应的有限元模拟框架,以模拟细胞聚集体形成的物理。例如,我们特别关注的是Kuan等人最近研究的细菌菌落形成过程。因此,我们将聚集过程描述为一种主动相分离现象。我们开发了对问题的拉格朗日连续体描述,从而为管理方程式的表述提供了实质性的简化。由于存在空间Hessian和Laplacian操作员,因此需要采用梯度增强的方法才能结合C1连续性。此外,还提供了该问题的强大而有效的有限元公式。泰勒山的有限元素用于实施,以避免与LBB条件相关的不稳定性。最后,通过一组数值示例,研究了各种参数对细胞聚集体形成动力学的影响。我们提出的方法为研究细胞聚集体的流变学和非平衡动力学提供了一个一般框架。
Cellular aggregates play a significant role in the evolution of biological systems such as tumor growth, tissue spreading, wound healing, and biofilm formation. Analysis of such biological systems, in principle, includes examining the interplay of cell-cell interactions together with the cell-matrix interaction. These two interaction types mainly drive the dynamics of cellular aggregates which is intrinsically out of equilibrium. Here we propose a non-linear continuum mechanics formulation and the corresponding finite element simulation framework to model the physics of cellular aggregate formation. As an example, we focus in particular on the process of bacterial colony formation as recently studied by Kuan et al. Thereby we describe the aggregation process as an active phase separation phenomenon. We develop a Lagrangian continuum description of the problem which yields a substantial simplification to the formulations of the governing equations. Due to the presence of spatial Hessian and Laplacian operators, a gradient-enhanced approach is required to incorporate C1 continuity. In addition, a robust and efficient finite element formulation of the problem is provided. Taylor-Hood finite elements are utilized for the implementation to avoid instabilities related to the LBB condition. Finally, through a set of numerical examples, the influence of various parameters on the dynamics of the cellular aggregate formation is investigated. Our proposed methodology furnishes a general framework for the investigation of the rheology and non-equilibrium dynamics of cellular aggregates.