论文标题
磁盘和插值中的不均匀泊松过程
Inhomogeneous Poisson processes in the disk and interpolation
论文作者
论文摘要
我们研究了与正面有限的,$σ$ -finite量的$λ_μ$相关的不均匀泊松点过程的不同几何特性。特别是,我们表征了$λ_μ$的过程,因此几乎可以肯定:1)$λ_μ$是Carleson-Newman序列; 2)$λ_μ$是给定数字m的分离序列的结合。我们使用这些结果来讨论$μ$ $ $ $,以便相关的过程$λ_μ$肯定是hardy,bloch或加权的迪里奇(Dirichlet)空间的插值序列。
We investigate different geometrical properties of the inhomogeneous Poisson point process $Λ_μ$ associated to a positive, locally finite, $σ$-finite measure $μ$ on the unit disk. In particular, we characterize the processes $Λ_μ$ such that almost surely: 1) $Λ_μ$ is a Carleson-Newman sequence; 2) $Λ_μ$ is the union of a given number M of separated sequences. We use these results to discuss the measures $μ$ such that the associated process $Λ_μ$ is almost surely an interpolating sequence for the Hardy, Bloch or weighted Dirichlet spaces.