论文标题

用于抛物线问题的光谱变异多尺度方法。应用于1D瞬态平流扩散方程

Spectral Variational Multi-Scale method for parabolic problems. Application to 1D transient advection-diffusion equations

论文作者

Rebollo, Tomás Chacón, Fernández-García, Soledad, Moreno-Lopez, David, Muñoz, Isabel Sánchez

论文摘要

在这项工作中,我们为抛物线问题的数值近似引入了一种多数尺度(VM)方法,其中从关联的椭圆运算符的特征仪上近似亚网格尺度。抽象方法专门针对一维的对流扩散方程,当对流速度通过网格元素上的分段恒定速度近似时,亚网格组件是根据光谱膨胀精确计算的。 我们证明了错误估计,特别意味着,当使用空间中的拉格朗日有限元离散时,光谱VMS方法与拉格朗格插值节点上对流扩散问题的隐式Euler半差异的精确解决方案相吻合。我们还构建了一种可行的方法,可以通过降低计算复杂性的离线/在线策略来解决发展的对流扩散问题。 我们与理论期望很好地执行了一些数值测试,这些测试表明,相对于几种稳定方法,其准确性提高了。

In this work, we introduce a Variational Multi-Scale (VMS) method for the numerical approximation of parabolic problems, where sub-grid scales are approximated from the eigenpairs of associated elliptic operator. The abstract method is particularized to the one-dimensional advection-diffusion equations, for which the sub-grid components are exactly calculated in terms of a spectral expansion when the advection velocity is approximated by piecewise constant velocities on the grid elements. We prove error estimates that in particular imply that when Lagrange finite element discretisations in space are used, the spectral VMS method coincides with the exact solution of the implicit Euler semi-discretisation of the advection-diffusion problem at the Lagrange interpolation nodes. We also build a feasible method to solve the evolutive advection-diffusion problems by means of an offline/online strategy with reduced computational complexity. We perform some numerical tests in good agreement with the theoretical expectations, that show an improved accuracy with respect to several stabilised methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源