论文标题
仪表-ML:自动甲烷源映射的多传感器地球观测基准
METER-ML: A Multi-Sensor Earth Observation Benchmark for Automated Methane Source Mapping
论文作者
论文摘要
减少甲烷排放对于缓解全球变暖至关重要。为了将甲烷排放归因于其来源,有必要综合的甲烷源基础设施数据集。深入学习远程感知的图像的最新进展有可能识别甲烷源的位置和特征,但是缺乏公开可用的数据,以使机器学习研究人员和从业人员能够构建自动化的映射方法。为了帮助填补这一空白,我们在美国构建了一个称为Met-ML的多传感器数据集,其中包含86,599个地理参考的NAIP,Sentinel-1和Sentinel-2图像,并在美国标记为甲烷源设施,包括甲烷源设施,包括集中动物饲养操作,煤矿,煤矿,垃圾填料,垃圾填料,天然气加工工厂,天然气加工工厂和油油级别的零食和货物量和货物量。我们尝试各种模型,以利用不同的空间分辨率,空间足迹,图像产物和光谱带。我们发现,我们的最佳模型在确定浓缩动物进食操作的精确召回曲线下达到了一个面积,在专家标签的测试集上,用于识别浓缩动物饲养操作,用于油炼油厂和石油末端的面积为0.821,这表明有可能进行大规模映射。我们在https://stanfordmlgroup.github.io/projects/meter-ml/上免费提供仪表-ML,以支持自动化甲烷源映射的未来工作。
Reducing methane emissions is essential for mitigating global warming. To attribute methane emissions to their sources, a comprehensive dataset of methane source infrastructure is necessary. Recent advancements with deep learning on remotely sensed imagery have the potential to identify the locations and characteristics of methane sources, but there is a substantial lack of publicly available data to enable machine learning researchers and practitioners to build automated mapping approaches. To help fill this gap, we construct a multi-sensor dataset called METER-ML containing 86,599 georeferenced NAIP, Sentinel-1, and Sentinel-2 images in the U.S. labeled for the presence or absence of methane source facilities including concentrated animal feeding operations, coal mines, landfills, natural gas processing plants, oil refineries and petroleum terminals, and wastewater treatment plants. We experiment with a variety of models that leverage different spatial resolutions, spatial footprints, image products, and spectral bands. We find that our best model achieves an area under the precision recall curve of 0.915 for identifying concentrated animal feeding operations and 0.821 for oil refineries and petroleum terminals on an expert-labeled test set, suggesting the potential for large-scale mapping. We make METER-ML freely available at https://stanfordmlgroup.github.io/projects/meter-ml/ to support future work on automated methane source mapping.