论文标题

物理增强分叉优化器:您所需要的只是一个规范的复杂网络

Physics-Enhanced Bifurcation Optimisers: All You Need Is a Canonical Complex Network

论文作者

Syed, Marvin, Berloff, Natalia G.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Many physical systems with the dynamical evolution that at its steady state gives a solution to optimization problems were proposed and realized as promising alternatives to conventional computing. Systems of oscillators such as coherent Ising and XY machines based on lasers, optical parametric oscillators, memristors, polariton and photon condensates are particularly promising due to their scalability, low power consumption and room temperature operation. They achieve a solution via the bifurcation of the fundamental supermode that globally minimizes either the power dissipation of the system or the system Hamiltonian. We show that the canonical Andronov-Hopf networks can capture the bifurcation behaviour of the physical optimizer. Furthermore, a continuous change of variables transforms any physical optimizer into the canonical network so that the success of the physical XY-Ising machine depends primarily on how well the parameters of the networks can be controlled. Our work, therefore, places different physical optimizers in the same mathematical framework that allows for the hybridization of ideas across disparate physical platforms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源