论文标题
视网膜分割的方向和上下文纠缠网络
Orientation and Context Entangled Network for Retinal Vessel Segmentation
论文作者
论文摘要
现有的大多数基于深度学习的方法用于船舶分割的方法忽略了视网膜血管的两个重要方面,一个是船只的定向信息,另一种是整个基底区域的上下文信息。在本文中,我们提出了一个强大的方向和上下文纠缠的网络(称为OCE-NET),该网络具有提取血管的复杂取向和上下文信息的能力。为了实现复杂的方向,提出了动态复杂方向意识卷积(DCOA CORV),以提取具有多种取向的复杂血管,以改善血管连续性。为了同时捕获全球上下文信息并强调重要的本地信息,开发了一个全球和局部融合模块(GLFM),以同时对船舶的远程依赖性进行建模,并将足够的关注集中在局部薄容器上。提出了一种新颖的方向和上下文纠缠的非本地(OCE-NL)模块,以将方向和上下文信息纠缠在一起。此外,提出了不平衡的注意模块(UARM)来处理背景,厚和薄容器的像素数量不平衡。在几个常用的数据集(驱动器,凝视和ChasceB1)和一些更具挑战性的数据集(AV范围内,UOA-DR,RFMID和UK Biobark)上进行了广泛的实验。消融研究表明,所提出的方法在维持薄容器的连续性方面实现了有希望的性能,比较实验表明,我们的OCE-NET可以在视网膜血管分割上实现最新性能。
Most of the existing deep learning based methods for vessel segmentation neglect two important aspects of retinal vessels, one is the orientation information of vessels, and the other is the contextual information of the whole fundus region. In this paper, we propose a robust Orientation and Context Entangled Network (denoted as OCE-Net), which has the capability of extracting complex orientation and context information of the blood vessels. To achieve complex orientation aware, a Dynamic Complex Orientation Aware Convolution (DCOA Conv) is proposed to extract complex vessels with multiple orientations for improving the vessel continuity. To simultaneously capture the global context information and emphasize the important local information, a Global and Local Fusion Module (GLFM) is developed to simultaneously model the long-range dependency of vessels and focus sufficient attention on local thin vessels. A novel Orientation and Context Entangled Non-local (OCE-NL) module is proposed to entangle the orientation and context information together. In addition, an Unbalanced Attention Refining Module (UARM) is proposed to deal with the unbalanced pixel numbers of background, thick and thin vessels. Extensive experiments were performed on several commonly used datasets (DRIVE, STARE and CHASEDB1) and some more challenging datasets (AV-WIDE, UoA-DR, RFMiD and UK Biobank). The ablation study shows that the proposed method achieves promising performance on maintaining the continuity of thin vessels and the comparative experiments demonstrate that our OCE-Net can achieve state-of-the-art performance on retinal vessel segmentation.