论文标题

使用变压器和图神经网络的逻辑合成结果质量的预测

The prediction of the quality of results in Logic Synthesis using Transformer and Graph Neural Networks

论文作者

Yang, Chenghao, Wang, Zhongda, Xia, Yinshui, Chu, Zhufei

论文摘要

在逻辑合成阶段,合成工具中的结构转换需要组合为优化序列,并在电路上作用以满足指定的电路面积和延迟。但是,逻辑综合优化序列正在耗时运行,并针对电路的综合优化序列预测结果的质量(QOR)可以帮助工程师更快地找到更好的优化序列。在这项工作中,我们提出了一种深度学习方法,以预测看不见的电路优化序列对的QOR。具体而言,结构转换通过嵌入方法和高级自然语言处理(NLP)技术(变压器)转换为向量,以提取优化序列的特征。此外,为了使模型的预测过程从电路到电路进行推广,电路的图表示为邻接矩阵和特征矩阵。图神经网络(GNN)用于提取电路的结构特征。对于此问题,使用了变压器和三个典型的GNN。此外,变压器和GNN被用作未见电路优化序列的QOR预测的联合学习政策。由变压器和GNN组合产生的方法基准测试。实验结果表明,变压器和图形的联合学习可提供最佳的结果。预测结果的平均绝对误差(MAE)为0.412。

In the logic synthesis stage, structure transformations in the synthesis tool need to be combined into optimization sequences and act on the circuit to meet the specified circuit area and delay. However, logic synthesis optimization sequences are time-consuming to run, and predicting the quality of the results (QoR) against the synthesis optimization sequence for a circuit can help engineers find a better optimization sequence faster. In this work, we propose a deep learning method to predict the QoR of unseen circuit-optimization sequences pairs. Specifically, the structure transformations are translated into vectors by embedding methods and advanced natural language processing (NLP) technology (Transformer) is used to extract the features of the optimization sequences. In addition, to enable the prediction process of the model to be generalized from circuit to circuit, the graph representation of the circuit is represented as an adjacency matrix and a feature matrix. Graph neural networks(GNN) are used to extract the structural features of the circuits. For this problem, the Transformer and three typical GNNs are used. Furthermore, the Transformer and GNNs are adopted as a joint learning policy for the QoR prediction of the unseen circuit-optimization sequences. The methods resulting from the combination of Transformer and GNNs are benchmarked. The experimental results show that the joint learning of Transformer and GraphSage gives the best results. The Mean Absolute Error (MAE) of the predicted result is 0.412.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源