论文标题
通过知识蒸馏和融合处理联合学习中的数据异质性
Handling Data Heterogeneity in Federated Learning via Knowledge Distillation and Fusion
论文作者
论文摘要
联合学习(FL)支持借助中央服务器对多个设备进行全球机器学习模型的分布培训。但是,不同设备的数据异质性导致客户模型漂移问题,并导致模型性能降低和模型公平不佳。为了解决这个问题,我们在本文中使用全球本地知识融合(FEDKF)计划设计联合学习。 FEDKF中的关键思想是让服务器返回每个训练回合中的全局知识,以与本地知识融合在一起,以便可以将本地模型正规化为全球最佳选择。因此,可以缓解客户模型漂移问题。在FEDKF中,我们首先提出了支持精确的全球知识表示形式的主动模型聚合技术。然后,我们提出了一种无数据知识蒸馏(KD)方法,以使每个客户模型能够学习全球知识(嵌入全球模型),而每个客户端模型仍然可以同时学习本地知识(嵌入本地数据集中),从而意识到全球本地知识融合过程。理论分析和密集实验证明了FEDKF比以前的解决方案的优越性。
Federated learning (FL) supports distributed training of a global machine learning model across multiple devices with the help of a central server. However, data heterogeneity across different devices leads to the client model drift issue and results in model performance degradation and poor model fairness. To address the issue, we design Federated learning with global-local Knowledge Fusion (FedKF) scheme in this paper. The key idea in FedKF is to let the server return the global knowledge to be fused with the local knowledge in each training round so that the local model can be regularized towards the global optima. Therefore, the client model drift issue can be mitigated. In FedKF, we first propose the active-inactive model aggregation technique that supports a precise global knowledge representation. Then, we propose a data-free knowledge distillation (KD) approach to enable each client model to learn the global knowledge (embedded in the global model) while each client model can still learn the local knowledge (embedded in the local dataset) simultaneously, thereby realizing the global-local knowledge fusion process. The theoretical analysis and intensive experiments demonstrate the superiority of FedKF over previous solutions.