论文标题

MRI容量中AI和非AI方法的比较验证以诊断帕金森氏综合症

Comparative Validation of AI and non-AI Methods in MRI Volumetry to Diagnose Parkinsonian Syndromes

论文作者

Song, Joomee, Hahm, Juyoung, Lee, Jisoo, Lim, Chae Yeon, Chung, Myung Jin, Youn, Jinyoung, Cho, Jin Whan, Ahn, Jong Hyeon, Kim, Kyung-Su

论文摘要

大脑磁共振成像(MRI)扫描的自动分割和体积对于诊断帕金森氏病(PD)和帕金森氏症综合症(P-Plus)至关重要。为了提高诊断性能,我们在脑部分割中采用了深度学习(DL)模型,并将其性能与金标准的非DL方法进行了比较。我们收集了对健康对照组(n = 105)和PD患者(n = 105),多个全身性萎缩(n = 132)的患者以及2017年1月至2020年12月在三星医疗中心的进行性上核麻痹(n = 69)的脑部MRI。壳,胶状和第三脑室,并将其视为DL模型的注释数据,即代表性的V-NET和UNETR。计算了分化正常,PD和P-Plus病例的曲线下的骰子分数和面积。每位患者六个大脑结构的V-NET和UNETR的分割时间分别为3.48 +-0.17和48.14 +-0.97 s,比FS(15,735 +-1.07 s)快300倍。两种DL模型的骰子得分都足够高(> 0.85),其疾病分类的AUC分类优于FS。为了分类正常与P-Plus和PD与多个全身性萎缩(小脑型)的分类,DL模型和FS显示出高于0.8的AUC。 DL显着减少了分析时间,而不会损害大脑分割和差异诊断的性能。我们的发现可能有助于在临床环境中采用DL脑MRI分割并提高大脑研究。

Automated segmentation and volumetry of brain magnetic resonance imaging (MRI) scans are essential for the diagnosis of Parkinson's disease (PD) and Parkinson's plus syndromes (P-plus). To enhance the diagnostic performance, we adopt deep learning (DL) models in brain segmentation and compared their performance with the gold-standard non-DL method. We collected brain MRI scans of healthy controls (n=105) and patients with PD (n=105), multiple systemic atrophy (n=132), and progressive supranuclear palsy (n=69) at Samsung Medical Center from January 2017 to December 2020. Using the gold-standard non-DL model, FreeSurfer (FS), we segmented six brain structures: midbrain, pons, caudate, putamen, pallidum, and third ventricle, and considered them as annotating data for DL models, the representative V-Net and UNETR. The Dice scores and area under the curve (AUC) for differentiating normal, PD, and P-plus cases were calculated. The segmentation times of V-Net and UNETR for the six brain structures per patient were 3.48 +- 0.17 and 48.14 +- 0.97 s, respectively, being at least 300 times faster than FS (15,735 +- 1.07 s). Dice scores of both DL models were sufficiently high (>0.85), and their AUCs for disease classification were superior to that of FS. For classification of normal vs. P-plus and PD vs. multiple systemic atrophy (cerebellar type), the DL models and FS showed AUCs above 0.8. DL significantly reduces the analysis time without compromising the performance of brain segmentation and differential diagnosis. Our findings may contribute to the adoption of DL brain MRI segmentation in clinical settings and advance brain research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源