论文标题

渐进式特征学习,用于逼真的换衣步态识别

Progressive Feature Learning for Realistic Cloth-Changing Gait Recognition

论文作者

Ren, Xuqian, Hou, Saihui, Cao, Chunshui, Liu, Xu, Huang, Yongzhen

论文摘要

步态识别在预防犯罪和社会保障方面起着重要作用,因为它可以长途进行以找出人的身份。但是,现有的数据集和方法在实践中无法令人满意地处理最具挑战性的布料换件问题。具体而言,实际步态模型通常经过自动标记的数据训练,其中每个人的序列观点和布条件都有一些限制。要混凝土,跨视图子数据集仅具有正常的步行状态而没有布料,而跨夹子的子数据库具有换衣服的序列,但仅在前视图中。结果,改变布的精度无法满足实际要求。在这项工作中,我们将问题提出为逼真的步态识别(缩写为RCC-GR),并构建了两个基准:Casia-BN-RCC和OUMVLP-RCC,以模拟上述设置。此外,我们提出了一个名为“渐进式特征学习”的新框架,可以使用现成的骨干来应用,以提高其在RCC-GR中的性能。具体而言,在我们的框架中,我们设计了渐进式映射和渐进的不确定性,以提取交叉视图功能,然后根据基础提取交叉插入功能。通过这种方式,跨视图子数据库的特征首先可以主导特征空间,并缓解由跨夹子子数据库的不良效应引起的不均匀分布。基准上的实验表明,我们的框架可以有效地提高识别性能,尤其是在换衣服的条件下。

Gait recognition is instrumental in crime prevention and social security, for it can be conducted at a long distance to figure out the identity of persons. However, existing datasets and methods cannot satisfactorily deal with the most challenging cloth-changing problem in practice. Specifically, the practical gait models are usually trained on automatically labeled data, in which the sequences' views and cloth conditions of each person have some restrictions. To be concrete, the cross-view sub-dataset only has normal walking condition without cloth-changing, while the cross-cloth sub-dataset has cloth-changing sequences but only in front views. As a result, the cloth-changing accuracy cannot meet practical requirements. In this work, we formulate the problem as Realistic Cloth-Changing Gait Recognition (abbreviated as RCC-GR) and we construct two benchmarks: CASIA-BN-RCC and OUMVLP-RCC, to simulate the above setting. Furthermore, we propose a new framework called Progressive Feature Learning that can be applied with off-the-shelf backbones to improve their performance in RCC-GR. Specifically, in our framework, we design Progressive Mapping and Progressive Uncertainty to extract cross-view features and then extract cross-cloth features on the basis. In this way, the feature from the cross-view sub-dataset can first dominate the feature space and relieve the uneven distribution caused by the adverse effect from the cross-cloth sub-dataset. The experiments on our benchmarks show that our framework can effectively improve recognition performance, especially in the cloth-changing conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源