论文标题

全体形态矩阵和卡兹丹财产的分解(t)

Factorization of Holomorphic Matrices and Kazhdan's property (T)

论文作者

Huang, Gaofeng, Kutzschebauch, Frank, Schott, Josua

论文摘要

在本文中,我们为组$ \ mathrm {sp} _ {2n}(\ Mathcal {o}(x))$ holomorthic sompletictic矩阵$ x $ x $ x $:HOLOMORPHICICIADIAD:HOLOMORPHICINCIATION,指定性分支,指定性分支和Kazhdan的属性(T)。在全体形态分解中,我们结合了第三作者和K理论工具的最新结果,以在$ x $是一维或二维的情况下为案例提供明确的界限。接下来,我们使用它们来找到指数分解的界限。作为进一步的应用程序,我们表明基本符号组$ \ mathrm {ep} _ {2n}(\ Mathcal {o}(x)(x))$ ADGEND KAZHDAN的属性(t)。

In this article we deduce some algebraic properties for the group $\mathrm{Sp}_{2n} (\mathcal{O}(X))$ of holomorphic symplectic matrices on a Stein space $X$: holomorphic factorization, exponential factorization, and Kazhdan's property (T). In holomorphic factorization we combine a recent result of the third author and K-theory tools to give explicit bounds for the case when $X$ is one-dimensional or two-dimensional. Next we use them to find bounds for exponential factorization. As a further application, we show that the elementary symplectic group $\mathrm{Ep}_{2n}(\mathcal{O}(X))$ admits Kazhdan's property (T).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源