论文标题
改善具有无监督域适应性类内部相似性的伪标签
Improving Pseudo Labels With Intra-Class Similarity for Unsupervised Domain Adaptation
论文作者
论文摘要
无监督的域适应性(UDA)将知识从富含标签的源域转移到一个不同但相关的完全未标记的目标域。为了解决域转移的问题,越来越多的UDA方法采用伪标签,以提高目标域的概括能力。但是,目标样本的不准确伪标记可能会在优化过程中产生次优性能,而误差积累。此外,一旦生成了伪标签,如何纠正生成的伪标签就远远没有探索过。在本文中,我们提出了一种新的方法来提高目标域中伪标签的准确性。它首先通过常规的UDA方法生成粗伪标签。然后,它迭代地利用目标样品的类内部相似性来改善生成的粗伪标签,并将源和目标域与改进的伪标记对齐。伪标签的准确性提高是通过首先删除不同样本,然后使用跨越树来消除阶级样品中使用错误的伪标签的样品进行的。我们已将提出的方法应用于几种常规的UDA方法作为附加术语。实验结果表明,所提出的方法可以提高伪标签的准确性,并进一步导致比常规基线更具歧视性和域的不变特征。
Unsupervised domain adaptation (UDA) transfers knowledge from a label-rich source domain to a different but related fully-unlabeled target domain. To address the problem of domain shift, more and more UDA methods adopt pseudo labels of the target samples to improve the generalization ability on the target domain. However, inaccurate pseudo labels of the target samples may yield suboptimal performance with error accumulation during the optimization process. Moreover, once the pseudo labels are generated, how to remedy the generated pseudo labels is far from explored. In this paper, we propose a novel approach to improve the accuracy of the pseudo labels in the target domain. It first generates coarse pseudo labels by a conventional UDA method. Then, it iteratively exploits the intra-class similarity of the target samples for improving the generated coarse pseudo labels, and aligns the source and target domains with the improved pseudo labels. The accuracy improvement of the pseudo labels is made by first deleting dissimilar samples, and then using spanning trees to eliminate the samples with the wrong pseudo labels in the intra-class samples. We have applied the proposed approach to several conventional UDA methods as an additional term. Experimental results demonstrate that the proposed method can boost the accuracy of the pseudo labels and further lead to more discriminative and domain invariant features than the conventional baselines.