论文标题

以顺序与序列语音综合的插入对话说话风格的移植

Transplantation of Conversational Speaking Style with Interjections in Sequence-to-Sequence Speech Synthesis

论文作者

Fernandez, Raul, Haws, David, Lorberbom, Guy, Shechtman, Slava, Sorin, Alexander

论文摘要

序列到序列直接从语音序列产生低水平的声学特征的序列到语音体系结构已知在提供足够数量的训练数据时会产生自然而表达的语音。这样的系统可以学习并将所需的语言风格从一个可见的说话者转移到另一种说话者(在多式扬声器设置中),这对于创建可扩展和可定制的人类计算机交互系统非常需要。在这项工作中,我们探索了一对多样式的转移,从专用的单扬声器对话语料库中,带有样式的细微差别和插入。我们详细介绍了语料库设计,并在辅助基于语音转换的数据增强时探索了这种样式转移的可行性。在一系列主观的聆听实验中,这种方法导致了高保真风格的转移,没有质量降解。但是,观察到某种语音角色转移,需要进一步改善语音转换。

Sequence-to-Sequence Text-to-Speech architectures that directly generate low level acoustic features from phonetic sequences are known to produce natural and expressive speech when provided with adequate amounts of training data. Such systems can learn and transfer desired speaking styles from one seen speaker to another (in multi-style multi-speaker settings), which is highly desirable for creating scalable and customizable Human-Computer Interaction systems. In this work we explore one-to-many style transfer from a dedicated single-speaker conversational corpus with style nuances and interjections. We elaborate on the corpus design and explore the feasibility of such style transfer when assisted with Voice-Conversion-based data augmentation. In a set of subjective listening experiments, this approach resulted in high-fidelity style transfer with no quality degradation. However, a certain voice persona shift was observed, requiring further improvements in voice conversion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源