论文标题

通过统计深度对私人估计进行差异估计

Differentially Private Estimation via Statistical Depth

论文作者

Cumings-Menon, Ryan

论文摘要

构建差异私有(DP)估计器需要得出观察的最大影响,在没有外源性界限的输入数据或估计器上,这可能很困难,尤其是在高维度设置中。本文表明,在这方面,统计深度(即半空间深度和回归深度)的标准概念在这方面尤其有利,这在于单个观察的最大影响很容易分析,并且该值通常很低。这用于使用这两个统计深度概念的最大值来激励新的近似DP位置和回归估计器。还提供了近似DP回归估计器的更高效的变体。此外,为避免要求用户对估计值和/或观测值指定先验界限,描述了这些DP机制的变体,即满足随机差异隐私(RDP),这是Hall,Wasserman,Wasserman和Rinaldo(2013)提供差异隐私的放松。我们还提供了此处提出的两种DP回归方法的模拟。当样本量至少为100-200或隐私性损失预算足够高时,提出的估计器似乎相对于现有的DP回归方法表现出色。

Constructing a differentially private (DP) estimator requires deriving the maximum influence of an observation, which can be difficult in the absence of exogenous bounds on the input data or the estimator, especially in high dimensional settings. This paper shows that standard notions of statistical depth, i.e., halfspace depth and regression depth, are particularly advantageous in this regard, both in the sense that the maximum influence of a single observation is easy to analyze and that this value is typically low. This is used to motivate new approximate DP location and regression estimators using the maximizers of these two notions of statistical depth. A more computationally efficient variant of the approximate DP regression estimator is also provided. Also, to avoid requiring that users specify a priori bounds on the estimates and/or the observations, variants of these DP mechanisms are described that satisfy random differential privacy (RDP), which is a relaxation of differential privacy provided by Hall, Wasserman, and Rinaldo (2013). We also provide simulations of the two DP regression methods proposed here. The proposed estimators appear to perform favorably relative to the existing DP regression methods we consider in these simulations when either the sample size is at least 100-200 or the privacy-loss budget is sufficiently high.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源