论文标题
稳定分层平面流量的结构化输入输出分析
Structured input-output analysis of stably stratified plane Couette flow
论文作者
论文摘要
我们采用了最近引入的结构化输入输出分析(SIOA)方法来分析稳定分层平面couette流中流量结构的流向和跨度波长。在低纤维数($ re $)低粉状richardson数字($ ri_b $)中,在空间间歇性制度中,我们证明SIOA预测与与该制度中特征性的oble式湍流波段相关的波长相关的高扩增。 SIOA还标识了类似于高$ $ $ $ $ $ $ $ $ ri_b $间歇性制度中通常观察到的湍流层层层的准回合流量结构。 $ ri_b $和$ re $ $ $ $的SIOA表明,当PRANDTL数字接近一个($ pr \ pr \ pr \ of 1 $)时,经典的英里范围稳定性标准($ ri_b \ leq 1/4 $)与最大放大流量结构的变化有关。但是,对于$ pr \ ll 1 $,最大的流量结构由产品$ prri_b $确定。对于$ pr \ gg 1 $,SIOA识别了我们显示的另一种准 - 霍森特流量结构,这些流程结构主要与密度扰动有关。我们进一步证明了这种密度相关的流量结构在高$ pr $限制中的主导地位,通过在未分层流的假设($ ri_b = 0 $)和流式不变性的假设下,根据$ re $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $和$ pr $的分析缩放量表和$ pr $的主导地位。
We employ a recently introduced structured input-output analysis (SIOA) approach to analyze streamwise and spanwise wavelengths of flow structures in stably stratified plane Couette flow. In the low-Reynolds number ($Re$) low-bulk Richardson number ($Ri_b$) spatially intermittent regime, we demonstrate that SIOA predicts high amplification associated with wavelengths corresponding to the characteristic oblique turbulent bands in this regime. SIOA also identifies quasi-horizontal flow structures resembling the turbulent-laminar layers commonly observed in the high-$Re$ high-$Ri_b$ intermittent regime. An SIOA across a range of $Ri_b$ and $Re$ values suggests that the classical Miles-Howard stability criterion ($Ri_b\leq 1/4$) is associated with a change in the most amplified flow structures when Prandtl number is close to one ($Pr\approx 1$). However, for $Pr\ll 1$, the most amplified flow structures are determined by the product $PrRi_b$. For $Pr\gg 1$, SIOA identifies another quasi-horizontal flow structure that we show is principally associated with density perturbations. We further demonstrate the dominance of this density-associated flow structure in the high $Pr$ limit by constructing analytical scaling arguments for the amplification in terms of $Re$ and $Pr$ under the assumptions of unstratified flow (with $Ri_b=0$) and streamwise invariance.