论文标题
熟练的教师半监督的3D对象检测
Semi-supervised 3D Object Detection with Proficient Teachers
论文作者
论文摘要
在自主驾驶场景中,基于点云的主导云的3D对象检测器很大程度上依赖于大量准确标记的样本,但是,点云中的3D注释非常乏味,昂贵且耗时。为了减少对大型监督的依赖,已经提出了基于半监督的学习(SSL)方法。伪标记的方法通常用于SSL框架,但是,教师模型的低质量预测严重限制了其性能。在这项工作中,我们通过将教师模型增强到具有几种必要的设计的熟练培训模型,为半监督3D对象检测提出了一个新的伪标记框架。首先,为了改善伪标签的召回,提出了一个时空集合(Ste)模块来生成足够的种子盒。其次,为了提高召回框的精度,基于群集的盒子投票(CBV)模块旨在从聚类的种子盒中获得汇总投票。这也消除了精致阈值选择伪标签的必要性。此外,为了减少训练期间错误的伪标记样本的负面影响,通过考虑智慧对比度学习(BCL)提出了软监督信号。在一次和Waymo数据集上验证了我们的模型的有效性。例如,一次,我们的方法将基线显着提高了9.51地图。此外,有了一半的注释,我们的模型在Waymo上具有完整的注释胜过Oracle模型。
Dominated point cloud-based 3D object detectors in autonomous driving scenarios rely heavily on the huge amount of accurately labeled samples, however, 3D annotation in the point cloud is extremely tedious, expensive and time-consuming. To reduce the dependence on large supervision, semi-supervised learning (SSL) based approaches have been proposed. The Pseudo-Labeling methodology is commonly used for SSL frameworks, however, the low-quality predictions from the teacher model have seriously limited its performance. In this work, we propose a new Pseudo-Labeling framework for semi-supervised 3D object detection, by enhancing the teacher model to a proficient one with several necessary designs. First, to improve the recall of pseudo labels, a Spatialtemporal Ensemble (STE) module is proposed to generate sufficient seed boxes. Second, to improve the precision of recalled boxes, a Clusteringbased Box Voting (CBV) module is designed to get aggregated votes from the clustered seed boxes. This also eliminates the necessity of sophisticated thresholds to select pseudo labels. Furthermore, to reduce the negative influence of wrongly pseudo-labeled samples during the training, a soft supervision signal is proposed by considering Box-wise Contrastive Learning (BCL). The effectiveness of our model is verified on both ONCE and Waymo datasets. For example, on ONCE, our approach significantly improves the baseline by 9.51 mAP. Moreover, with half annotations, our model outperforms the oracle model with full annotations on Waymo.