论文标题

宽度的晶格大小一个晶格多塔,$ \ mathbb {r}^3 $

Lattice Size of Width One Lattice Polytopes in $\mathbb{R}^3$

论文作者

Alajmi, Abdulrahman, Soprunova, Jenya

论文摘要

晶格polytope $ p $的晶格尺寸$ \ operatorname {ls_δ}(p)$是几何不变的,它是针对整体程度和界限的总体程度和双度方程式的正式引入的,但在代数曲线的定义方程式中,但在较早的基础上隐含地隐含着隐含的基因组合图。在本文中,我们表明,对于一个空的晶格polytope $ p \ subset \ mathbb {r}^3 $,存在$ \ mathbb {z}^3 $的简化基础,该基础计算其晶状体大小$ \ propatateOrnAme {ls_δ}(p)$。这导致了用于计算此类$ p $的快速算法。我们还将此结果扩展到另一类的晶格宽度一个polytopes $ p \ subset \ mathbb {r}^3 $。然后,我们提供了一个反例,证明该结果对于晶格宽度的任意晶格polytope $ p \ subset \ mathbb {r}^3 $不满。

The lattice size $\operatorname{ls_Δ}(P)$ of a lattice polytope $P$ is a geometric invariant, which was formally introduced in relation to the problem of bounding the total degree and the bi-degree of the defining equation of an algebraic curve, but appeared implicitly earlier in geometric combinatorics. In this paper, we show that for an empty lattice polytope $P\subset\mathbb{R}^3$ there exists a reduced basis of $\mathbb{Z}^3$ which computes its lattice size $\operatorname{ls_Δ}(P)$. This leads to a fast algorithm for computing $\operatorname{ls_Δ}(P)$ for such $P$. We also extend this result to another class of lattice width one polytopes $P\subset\mathbb{R}^3$. We then provide a counterexample demonstrating that this result does not hold true for an arbitrary lattice polytope $P\subset\mathbb{R}^3$ of lattice width one.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源