论文标题

部分可观测时空混沌系统的无模型预测

Asymptotic Betti numbers for hard squares in the homological liquid regime

论文作者

Alpert, Hannah, Kahle, Matthew, MacPherson, Robert

论文摘要

我们研究$ n $ n $ punge的配置空间$ c(n; p,q)$ $ p $ by $ q $矩形。我们的目标是估算大型$ n $,$ j $,$ p $和$ q $的贝蒂数字。我们考虑区域范围坐标的序列,其中$(\ frac {n} {pq},\ frac {j} {pq} {pq})$收敛为$ n $,$ j $,$ j $,$ p $和$ q $ off infinity。对于在$(x,y)$ - 飞机中收敛到“可行区域”中一个点的每个序列,我们表明,贝蒂数的阶乘增长率与循环增长率相同。这意味着(1)Betti数字大于飞机中$ n $订购点的配置空间,其阶乘增长率为$ j!$,(2)最终在同源液体状态下。

We study configuration spaces $C(n; p, q)$ of $n$ ordered unit squares in a $p$ by $q$ rectangle. Our goal is to estimate the Betti numbers for large $n$, $j$, $p$, and $q$. We consider sequences of area-normalized coordinates, where $(\frac{n}{pq}, \frac{j}{pq})$ converges as $n$, $j$, $p$, and $q$ approach infinity. For every sequence that converges to a point in the "feasible region" in the $(x,y)$-plane, we show that the factorial growth rate of the Betti numbers is the same as the factorial growth rate of $n!$. This implies that (1) the Betti numbers are vastly larger than for the configuration space of $n$ ordered points in the plane, which have the factorial growth rate of $j!$, and (2) every point in the feasible region is eventually in the homological liquid regime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源