论文标题

人工智能如何有助于IEEG研究?

How does artificial intelligence contribute to iEEG research?

论文作者

Berezutskaya, Julia, Saive, Anne-Lise, Jerbi, Karim, van Gerven, Marcel

论文摘要

人工智能(AI)是一个快速增长的领域,专注于建模和机器实施各种认知功能,计算机视觉,文本处理,机器人技术,神经技术,生物启发的计算等应用程序越来越多。在本章中,我们描述了如何在颅内脑电图(IEEG)研究的背景下应用AI方法。 IEEG数据是独一无二的,因为它提供了直接从脑组织记录的极高质量信号。将高级AI模型应用于这些数据具有进一步的潜力,可以进一步了解神经科学中许多基本问题。同时,作为一种侵入性技术,IEEG非常适合长期移动的脑部计算机界面应用程序,尤其是在严重瘫痪的个体中进行交流。我们在将AI技术应用于IEEG时提供了这两个研究方向的详细概述。也就是说,(1)针对有关认知神经生物学性质的基本问题的计算模型的开发(神经科学的AI-IEEG)和(2)应用于监测和鉴定事件驱动的大脑状态的研究,以开发临床脑部计算机界面的开发事件驱动的大脑状态(AI-II-IEEG for Neurotechnology)。我们解释了关键的机器学习概念,处理和建模IEEG数据的细节以及基于IEEG的最新神经技术和脑部计算机接口的详细信息。

Artificial intelligence (AI) is a fast-growing field focused on modeling and machine implementation of various cognitive functions with an increasing number of applications in computer vision, text processing, robotics, neurotechnology, bio-inspired computing and others. In this chapter, we describe how AI methods can be applied in the context of intracranial electroencephalography (iEEG) research. IEEG data is unique as it provides extremely high-quality signals recorded directly from brain tissue. Applying advanced AI models to these data carries the potential to further our understanding of many fundamental questions in neuroscience. At the same time, as an invasive technique, iEEG lends itself well to long-term, mobile brain-computer interface applications, particularly for communication in severely paralyzed individuals. We provide a detailed overview of these two research directions in the application of AI techniques to iEEG. That is, (1) the development of computational models that target fundamental questions about the neurobiological nature of cognition (AI-iEEG for neuroscience) and (2) applied research on monitoring and identification of event-driven brain states for the development of clinical brain-computer interface systems (AI-iEEG for neurotechnology). We explain key machine learning concepts, specifics of processing and modeling iEEG data and details of state-of-the-art iEEG-based neurotechnology and brain-computer interfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源