论文标题

上下文信息和基于常识的提示在对话中识别情绪

Contextual Information and Commonsense Based Prompt for Emotion Recognition in Conversation

论文作者

Yi, Jingjie, Yang, Deqing, Yuan, Siyu, Cao, Caiyan, Zhang, Zhiyao, Xiao, Yanghua

论文摘要

对话中的情感识别(ERC)旨在检测给定对话中每种话语的情感。新提出的ERC模型利用了预训练的语言模型(PLM),并具有预训练和微调的范式,以获得良好的性能。但是,这些模型很少会彻底利用PLM的优势,并且对于缺乏明确的情感表达的对话而表现不佳。为了充分利用与话语中情感表达相关的潜在知识,我们提出了一种新颖的ERC模型Cisper,并具有新的及时和语言模型(LM)调整的范式。具体而言,Cisper配备了及时融合与对话者的话语相关的上下文信息和常识,以更有效地实现ERC。我们的广泛实验表明,Cisper在最新的ERC模型中的出色表现以及利用这两种重要及时及时绩效的重要信息的有效性。为了方便地重现我们的实验结果,Cisper的Sourcecode和数据集已在https://github.com/deqingyang/cisper上共享。

Emotion recognition in conversation (ERC) aims to detect the emotion for each utterance in a given conversation. The newly proposed ERC models have leveraged pre-trained language models (PLMs) with the paradigm of pre-training and fine-tuning to obtain good performance. However, these models seldom exploit PLMs' advantages thoroughly, and perform poorly for the conversations lacking explicit emotional expressions. In order to fully leverage the latent knowledge related to the emotional expressions in utterances, we propose a novel ERC model CISPER with the new paradigm of prompt and language model (LM) tuning. Specifically, CISPER is equipped with the prompt blending the contextual information and commonsense related to the interlocutor's utterances, to achieve ERC more effectively. Our extensive experiments demonstrate CISPER's superior performance over the state-of-the-art ERC models, and the effectiveness of leveraging these two kinds of significant prompt information for performance gains. To reproduce our experimental results conveniently, CISPER's sourcecode and the datasets have been shared at https://github.com/DeqingYang/CISPER.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源