论文标题
三维像素图像的任意统一旋转
Arbitrary unitary rotation of three-dimensional pixellated images
论文作者
论文摘要
使用Bargmann和Moshinsky引入的系数减少SU($ 3 $)代数的笛卡尔三维振荡器多重状态为SO($ 3 $)Angular Mommentumsultiplets,我们实现了形成三维的田纳西亚阵列的统一旋转,形成了有限的田间像Filite Pixellated Pixellated posixellated”音量图像。在笛卡尔和球形底座之间转换后,后者的旋转子组被转换为前者的旋转,从而可以正确地串联和反转这些单一变换,这不会导致信息损失。
Using the coefficients introduced by Bargmann and Moshinsky for the reduction of the su($3$) algebra of Cartesian three-dimensional oscillator multiplet states into so($3$) angular momentum submultiplets, we implement unitary rotations of three-dimensional Cartesian arrays that form finite pixellated "volume images." Transforming between the Cartesian and spherical bases, the subgroup of rotations in the latter is converted into rotations of the former, allowing for proper concatenation and inversion of these unitary transformations, which entail no loss of information.